بررسی تاثیر فرایند تولید بیواتانول بر برخی ویژگی‌های کیفی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه بیوسیستم، دانشگاه فردوسی مشهد

4 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در تحقیق حاضر، به ­بررسی شرایط بهینه تولید بیواتانول سوختی از سه نوع قند پرداخته شده و سپس تاثیر شرایط عملیاتی تولید بر روی برخی خصوصیات مهم فیزیکی آن مانند گرانروی، چگالی و نقطه اشتعال آن بررسی شده است. در این مطالعه، 27 نوع اتانول گیاهی از مواد ملاس نیشکر، ملاس چغندر قند و شربت غلیظ نیشکر، در سه زمان 24، 48 و 72 ساعت و در سه دمای C 35، C30 و C 25 به­ روش تخمیر بی­هوازی تولید شدند. سپس، پارامترهای گرانروی سینماتیکی، چگالی و نقطه اشتعال آن­ها با سه تکرار تعیین شد. نتایج نشان داد که با افزایش دما و زمان، گرانروی، چگالی و نقطه اشتعال کاهش می­ یابند. نوع ماده قندی نیز اثر معنا­داری داشت؛ بدین­ گونه که نزدیک ترین گرانروی به­ میزان استاندارد بیواتانول مربوط به ملاس نیشکر در دمای C 25 و بعد از 72 ساعت به میزان cSt 5174/1 به ­دست آمد. شبیه­ ترین چگالی به مقدار استاندارد در دمای C 35 و بعد از 72 ساعت برای شربت نیشکر با میزان  g/cm3 9560/0 محاسبه شد. نقطه اشتعال C 5/24 به­ عنوان نزدیک­ ترین نقطه ­اشتعال به میزان استاندارد بیواتانول گزارش شد که مربوط­ به شربت نیشکر در دمای C30 و زمان 72 ساعت بود. بیشترین میزان بیواتانول تولیدشده gr.L-1 74 و مربوط به ملاس نیشکر در دمای C 35 و بعد 72 ساعت گزارش شد. روش ارائه شده برای تولید بیواتانول از مواد قندی توانست سوخت با خصوصیات کیفی منطبق با استاندارد سوخت ­های بیواتانول را فراهم آورد.
 

کلیدواژه‌ها


عنوان مقاله [English]

The investigation of production processing effect on some bioethanol qualitative properties

نویسندگان [English]

  • hassan sadrnia 1
  • Azar Khodabakhshikoulaei 2
  • Mohammad Tabasizadeh 3
  • Barat Ghobadian 4
1 Ferdowsi University of Mashhad
2 department of biosystems engineering, faculty of agriculture, Ferdowsi university of Mashhad, Mashhad, Iran
3 1. Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
4 department of biosstems engineering, Faculty of agriculture, Tarbiat Modares university of Tehran, Tehran, Iran
چکیده [English]

Azar Khodabakhshikoulaei1, Hassan Sadrnia2*, Mohammad Tabasizadeh3 and Barat Ghobadian4
1. Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, azar.khodabakhshikoolaei@mail.um.ac.ir
2. Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Hassan.sadrnia@um.ac.ir
3. Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, tabasizadeh@um.ac.ir
4. Faculty of Agriculture, TarbiatModarres University, Tehran, ghobadib@modares.ac.ir
*Corresponding author
 (Received: 2018.12.4, Received in revised form2019.1.7, Accepted: 2019.2.10)
 
In the current paper, the optimum conditions for bioethanol production from sugars were surveyed. Then the operational condition effect on some physical characteristics of bioethanol fuel was investigated. 27 types of bioethanol samples from sugarcane molasses, sugar beet molasses and sugar cane juice were produced at anaerobic fermentation condition in three different temperature levels of 25 ˚C, 30˚c and 35 ˚C and in three different time levels of 24h, 48 h and 72 h. Then the values of density, kinematic viscosity and flash point were calculated in triplets. The results showed that with increasing the temperature and time processing, the viscosity, density and flashpoint would be decreased. The sugar type had a significant effect on these parameters. The closest value of viscosity to its standard amount was related to sugarcane molasses, producing at 25 ˚C and after 72 h fermentation, which was 1.5174 cSt. The nearest amount of density to its standard value was reported 0.9560 which was attributed to sugarcane juice producing at 35˚C and after 72 hours and for flashpoint it was 24.5 ˚C which belonged to sugarcane juice at 30 ˚C and 72 hours. The most bioethanol concentration was 74 gr.L-1 which was produced from sugarcane juice at 35 cand after 72h.

کلیدواژه‌ها [English]

  • Keywords: bioethanol
  • fermentation
  • viscosity
  • density
  • flashpoint
  1. L. Hernandez and V. Kafarov, “Use of bioethanol for sustainable electrical energy production,” Int J Hydrogen Energy, 34, 2009, pp. 7041-50.
  2. M. Balat and H. Balat. “Recent trends in global production and utilization of bioethanol fuel,” Appl Energy, 86, 2009, pp. 2273-82.
  3. A. Walter, F. Rosillo-Calle, P. Dolzan, E. Piacente and K. Borges da Chuna, “Perspectives on fuel ethanol consumption and trade”. Biomass Bioenergy, 32, 2008, pp. 730-48.
  4. G. Najafi and et al, “Potential of bioethanol production from agricultural wastes in Iran,” Renewable and Sustainable Energy Reviews, 13, 2009, pp. 1418-1427.
  5. L. A. Rodrı´guez and et al, “Bioethanol production from grape and sugar beet pomaces by solid-state fermentation,” International journal of hydrogen energy, 35, 2010, pp. 5914-5917.
  6. S. Dodic and et al, “Bioethanol production from thick juice as intermediate of sugar beet processing,” Biomass and bio-energy, 33, 2009, pp. 822-827.
  7. H. Zentou and et al, “Effect of Operating Conditions on Molasses fermentation for Bioethanol production,” International Journal of Applied Engineering Research, 12, No. 15, 2017, pp. 5202-5506
  8. A. B. M. Sharif Hossain and et al, “Bioethanol fuel production from rotten banana as an environmental waste management and sustainableenergy,” African Journal of Microbiology Research, 5, No. 6, 2012, pp. 586-598
  9. O. C. Nwufo, O. M. I. Nwafor and J. O. Igbokwe. “Effects of blends on the physical properties of bioethanol produced from selected Nigerian crops,” International Journal of Ambient Energy, 3, No. 71, 2013, pp. 10-15
  10. E. Torres-Jimenez and et al. Physical and chemical properties of ethanol–diesel fuel blends,” Fuel,90, 2011, pp. 795-802.
  11. L. Pidol, B. Lecointe, L. Starck and N. Jeuland, “Ethanol–biodiesel–diesel fuel blends: performances and emissions in conventional diesel and advanced low temperature combustions,” Fuel, 93, 2012, pp. 329-38.
  12. E. Alptekin and M. Canakci, “Characterization of the key fuel properties of methyl ester-diesel fuel blends,” Fuel, 88, 2009, pp. 75-80
  13. P. Kwanchareon, A. Luengnaruemitchai and S. Jai-In, “Solubility of a diesel– biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine,” Fuel, 86, 2007, pp. 1053-61
  14. K. Anand, A. Ranjan and P. S. Mehta, “Estimating the viscosity of vegetable oil and biodiesel fuels,”  Energy Fuels, 24, 2009, pp. 664-672.
  15. D.G. Li andet al. “Physico-chemical properties of ethanol–diesel blend fuel and its effect on performance and emissions of diesel engines,” Renewable Energy, 30, 2005, pp. 967-976.
  16. M, Zöldy, “Ethanol–biodiesel–diesel blends as a diesel extender option on compression ignition engines,” Transport, 26, 2011, pp. 303-9.
  17. G. J. Pickering and et al. “The Effect of Ethanol Concentration on the Temporal Perception of Viscosity and Density in White Wine,” Am. J. Enol. Vitic, 49, No. 3, 1998, pp. 306-318.
  18. D. H. Sutjahjo, “The characteristics of bioethanol fuel made of vegetable raw materials,”  Materials Science and Engineering, 296,2018, pp.012-019
  19. https://www.engineeringtoolbox.com/ethanol-ethyl-alcohol-properties, Accessed 10/10/2018.
  20. V. Kumbar and P. Dostal, “Temperature  dependence  density  and kinematic viscosity of petrol, bioethanol and their blends,” Pak. J. Agri. Sci, 51, No. 1, 2014, pp. 175-179
  21. O. S. Valente, V. M. D. Pasa, C. R. P. Belchior and J. R. Sodré, “Physical–chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends,” Fuel, 90, 2011, pp. 1700-1702.
  22. H. Rahimi, B. Ghobadian, v. Yusaf, G. Najafi and M. Khatamifar, “Diesterol: an environment-friendly IC,” engine fuel. Renew Energy, 34, 2009, pp. 335-42.
  23. Y. Zheng, C. Yu, Y. S. Cheng, C. Lee, C. W. Simmons, T. M. Dooley and J. S. VanderGheynst, “Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production,”  Applied Energy, 93, 2012, pp. 168-175.
  24. Y. Guo, H. Wei, F. Yang, D. Li, Fang, R. Lin, “Study on volatility and flash point of the pseudo-binary mixtures of sunflowerseed-based biodiesel + ethanol,” Journal of Hazardous Materials, 167, 2009, pp. 625-629