مطالعه تجربی توزیع دمای محفظه احتراق استوانه‌ای در شرایط اتمسفریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی هوافضا دانشگاه صنعتی امیرکبیر

2 دانشگاه صنعتی امیرکبیر، دانشکده مهندسی هوافضا

3 دانشجوی دکتری، مهندسی هوافضا، دانشگاه صنعتی امیرکبیر، تهران

چکیده

در این پژوهش، محفظه احتراق توربین گاز نمونه به­صورت تجربی مورد مطالعه قرار می‌گیرد. هدف از این تحقیق بررسی اثر  دبی‌های مختلف سوخت و هوا بر عملکرد محفظه و نیز فرایند خاموشی رقیق از سوخت در شرایط پایا و اتمسفریک است. محفظه احتراق مورد بررسی از نوع استوانه‌ای بوده و سوخت مایع کروسین با استفاده از انژکتور پیچشی فشاری به محفظه احتراق تزریق می‌شود. چرخاننده محوری دارای عدد چرخش 0/8 بوده و دمای هوای ورودی به محفظه 315 کلوین است. در ابتدا، محدوده پایداری محفظه احتراق مشخص شده و سپس اثر فشار بالادست انژکتور و دبی هوا بر دمای گازهای درون محفظه و خروجی از آن اندازه‌گیری شد. به­منظور بررسی دقیق‌تر علت تغییر رفتار محفظه احتراق ناشی از تغییر دبی هوا، چهار نقطه عملکردی انتخاب شده و کانتور دمای درون محفظه احتراق استخراج شده است. نتایج نشان می‌دهد که شعله در ناحیه بالا و پایین محفظه احتراق و در مجاورت دیواره‌ها تشکیل می‌شود. بررسی ضریب یکپارچگی دمای خروجی از محفظه احتراق نشان می‌دهد که بهترین عملکرد در حالتی است که تمام شعله درون محفظه احتراق بوده و در عین حال، دبی هوا کمینه باشد. علاوه­بر این، مشخص شد که فرایند خاموشی محفظه احتراق در شرایط رقیق به­صورت یکنواخت نیست، بلکه با افزایش دبی هوا ابتدا شعله بالای محفظه احتراق و سپس شعله پایین خاموش شده و درنهایت منجر به خاموشی کل محفظه احتراق در شرایط رقیق از سوخت می‌شود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimentally investigation of flame temperature distribution inside a can type combustor

نویسندگان [English]

  • BENYAMIN Kankashvar 1
  • sadegh TabeJamaat 2
  • Masoud EidiAttarZade 1
  • MohammadReza SadatAkhavi 1
  • Majid Aghayari 3
1 Amirkabir University of Technology
2 Amirkabir University of Technology Department of Aerospace Engineering
3 Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

A gas turbine combustor has been investigated experimentally in this paper. The effect of air and fuel flow rates on the on combustor performance and lean blow out at atmospheric and steady condition is the goal. The combustor is a can type with swirl pressure fed injector. An axial swirler with swirl No. equal to 0.8 has been installed. The kerosene has been used as fuel while the air temperature at combustor inlet is equal to 315 K. The combustor Stability loop has been determined with several tests. Then variation of temperature inside the combustor and at combustor exit with respect to the injector back pressure and air flow rate are measured. 4 operating conditions have been selected due to detail investigation of flame temperature contour inside the combustor. The results show that the flame holds near the walls. Also, the pattern factor show that the best condition is when the flame is totally inside the combustor while the air flow rate is minimum. Furthermore, it is cleared that the lean blow out is not uniform. It means that with increasing the air flow rate, upper section of flame has been quenched and then the lower section of flame.

کلیدواژه‌ها [English]

  • Gas turbine
  • combustor
  • test stand
  • atmospheric
  • temperature distribution
      M. Makida, Y. Hideshi, and Y. Takeshi, “Development of full annular combustor for small aircraft jet engine in Jaxa Tech clean project,” Proc. of 26th Int. Conf. of the Aeronautical Sci., Anchorage, Alaska, USA, 2008.
2.   A. H. Lefebvre, Gas Turbine Combustion: Alternative Fuels And Emissions, New York, CRC press, 2010.
3.   M. Heitor, and J. Whitelaw, "Velocity, Temperature, and species characteristics of the flow in a gas-turbine combustor,” Combustion and Flame, 64, No. 1,1986. pp. 1-32.
4.   W. Jones, and H. Toral, “Temperature and composition measurements in a research gas turbine combustion chamber,” Combustion Science And Technology, 31, No. 5-6,1983, pp. 249-275.
5.   A. Vranos, and E. D. Taback, “Combustion product distributions in the primary zone of a gas turbine combustor,” Combustion and Flame, 26, 1976, pp. 129-131.
6.   A. Mellor, Design Of Modern Turbine Combustors, London, Academic Pr, 1990.
7.   M. P. Boyce, Gas Turbine Engineering Handbook, San Diego, Elsevier, 2011.
8.   P. Rajpara, and et al., “Thermal and emission characteristics of reverse air flow CAN combustor,” International Journal of Thermal Sciences, 128, 2018, pp. 175-183.
9.   R. Jeffs, “The flame stability and heat release rates of some can-type combustion chambers,” Symposium (International) on Combustion, California Institute of Technology Pasadenia, California, USA,1961.
10. C. Kotzer, M. LaViolette, and W. Allan. “Effects of Combustion Chamber Geometry Upon Exit Temperature Profiles,”  ASME Turbo Expo 2009: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2009.
11. J. Odgers, and D. Kretschmer, Gas Turbine Fuels and Their Influence on Combustion, Vol. 5, Tunbridge Wells, CRC Press, 1986.
12. J. Bhangu, D. Snape, and B. Eardley, “The design and development of a low emissions transply combustor for the civil Spey engine,” 62nd Propulsion and Energetics Panel Symposium, Cesme, Turkey, 1984,.
13. A. Bicen, D. Tse, and J. Whitelaw, “Combustion characteristics of a model can-type combustor,” Combustion and Flame, 80, No. 2, 1990, pp. 111-125.
14. J. McGuirk, and J. Palma, “Experimental investigation of the flow inside a water model of a gas turbine combustor: part 1-mean and turbulent flowfield,” Journal of Fluids Engineering, 117, No. 3, 1995, pp. 450-458.
15. H.Toral, and J. Whitelaw, “Velocity and scalar characteristics of the isothermal and combusting flows in a combustor sector rig,” Combustion and Flame, 45, 1982, pp. 251-272.
16. M. Heitor, and A. Moreira, “Thermocouples and sample probes for combustion studies,” Progress in Energy and Combustion Science, 19, No. 3, 1993, pp. 259-278.
17. A. Datta, and S. Som, “Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions,” Applied Thermal Engineering, 19, No. 9, 1999, pp. 949-967.
18. W. Shyy, S. Correa, and M. Braaten, “Computation of flow in a gas turbine combustor,” Combustion Science and Technology, 58, No. 1-3, 1988, pp. 97-117.
19. F. Di Mare, W. Jones, and K. Menzies, “Large eddy simulation of a model gas turbine combustor,” Combustion and Flame, 137, No. 3, 2004, pp. 278-294.
20. G. Bulat, W. Jones, and A. Marquis, “NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method,” Combustion and Flame, 161, No. 7, 2014, pp. 1804-1825.
21. R. Shisler, J. Tuttle, and A. Mellor, “Emissions from and within a film-cooled combustor,” Combustion Science and Technology, 11, 3-4, 1975, pp. 153-160.
22. J. Noyce, and C. Sheppard, “The influence of equivalence ratio variation on pollutant formation in a gas turbine type combustor,” Combustion science and Technology, 29, No. 1-2, 1982, pp. 37-52.
23. H. Heravi, and P. Baziar, “The effect of swirl on NO X formation in non-premixed propane air flame,” Proceeding of The European Combustion Meeting, Skudai, Johor, Malaysia, 2011.
24. R. D. Shah, and J. Banerjee, “Thermal and emission characteristics of a CAN combustor,” Heat and Mass Transfer, 52, No. 3, 2016, pp. 499-509.
25. L. Zhou, X. Chen, and J. Zhang, “Studies on the effect of swirl on no formation in methane/air turbulent combustion,” Proceedings of the Combustion Institute, 29, No. 2, 2002, pp. 2235-2242.
26. M. Heitor, Experiments in Turbulent Reacting Flows, PhD Thesis, Department of Mechanical Engineering, University of London, London, 1985.
27. W. S. Blazowski, “Future jet fuel combustion problems and requirements,” Progress in Energy and Combustion Science, 4, No. 3, 1978, pp. 177-199.
28. A. Bicen, and W. Jones, “Velocity characteristics of isothermal and combusting flows in a model combustor,” Combustion Science and Technology, 49, No. 1-2, 1986, pp. 1-15.
29. A. Green, and J. Whitelaw, “Isothermal models of gas-turbine combustors,” Journal of Fluid Mechanics, 126, 1983, pp. 399-412.
30. G. Pucher, and et al., “Fuel nozzle performance analysis using laser techniques and combustion chamber with optical access,” ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona International Convention Center (CCIB), Barcelona, Spain, 2006.
31. K. Bishop, and W. Allan, “Effects of fuel nozzle condition on gas turbine combustion chamber exit temperature distributions,”  ASME Turbo Expo 2010: Power for Land, Sea, and Air, International Gas Turbine Institute, Glasgow, UK, 2010.
32. J. Odgers, D. Kretschmer, and G. Pearce, “The combustion of droplets within gas turbine combustors: Some recent observations on combustion efficiency,” Journal of Engineering for Gas Turbines and Power, 115, No. 3), 1993, pp. 522-532.
33. A. Azimi, and et al., “Designing a Gas Turbine Combustor Test Rig and Testing a Sample Combustor at Atmospheric Conditions,” Fuel and Combustion, 10, No. 1, pp. 87-104, 2017.
34. M. B. Khalil, Investigation of combustion characteristics of low-medium heating value gases in an atmospheric pressure combustor, PhD Thesis, Department of Mechanical Engineering, Carleton University, Ottawa, 1985.
35. A. H. Lefebvre, and V. G. McDonell, Atomization and Sprays, New York, CRC press, 2017.
36. C. Spadaccini,and  et al., “High power density silicon combustion systems for micro gas turbine engines,” ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, Netherlands, 2002.
37. A. H. Lefebvre, “Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions,” Journal of Aircraft, 21, No. 11, pp. 887-898, 1984.