تحلیل عددی و آزمایشگاهی اثر گرمایش مستقیم سوخت گاز طبیعی بر تشکیل دوده، خصوصیات احتراقی، درخشندگی و تولید NOx در شعله نفوذی گاز طبیعی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این مقاله، با هدف افزایش تابش شعله گاز طبیعی، اثر گرمایش مستقیم سوخت در محفظه پیش­ احتراق بر تولید ذرات کربنی در فرایند احتراق و تاثیر آن بر درخشندگی شعله، دمای محصولات احتراق و همچنین انتشار آلاینده­های احتراقی مورد مطالعه عددی و آزمایشگاهی قرار گرفته است. کل دبی جرمی سوخت ورودی ثابت بوده که از دو مجرای مختلف وارد محفظه پیش­احتراق می­شوند. ابتدا، سوخت اولیه به­صورت محوری و سپس سوخت خوراک به­ صورت شعاعی در شعله حاصل از گاز اولیه تزریق شده و اثر نسبت سوخت اولیه به کل دبی سوخت مطالعه شده است. شبیه­سازی­ها به­صورت سه­بعدی انجام شده و برای مدلسازی احتراق از مفهوم کسر مخلوط و با درنظر گرفتن اثرات آشفتگی بر نرخ واکنش­های شیمیایی از مدل تابع چگالی احتمال  با توزیع فرضی استفاده شده است. نتایج عددی نشان می­دهد که در نسبت­های سوخت اولیه به کل دبی سوخت کمتر از 50 درصد، دوده ناشی از احتراق ناقص سوخت خوراک در محفظه پیش احتراق باعث افزایش انتشارCO  در خروجی کوره و کاهش بازده احتراق می­شود. اما، در نسبت­ های سوخت اولیه به کل دبی سوخت بیشتر از 50 درصد  و کامل­تر شدن فرایند احتراق، به علت تجزیه حرارتی سوخت خوراک و تولید کربن زنده، تابش از شعله افزایش یافته است. در نسبت سوخت اولیه به کل دبی سوخت برابر 85 درصد،  ذرات کربنی به میزان 9 درصد دبی سوخت کل تولید می­شود و این ذرات کربنی در داخل شعله اصلی با کسب انرژی درخشان شده و در نتیجه آن تابش 15درصد افزایش و انتشار الاینده NOx حدود PPM52 کاهش یافته است. نتایج عددی و تجربی توزیع دما و انتشار NOx تطابق خوبی نشان می­دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of direct heating of natural gas on soot formation, flame temperature, luminosity and emissions: A Combined Experimental and Numerical Approach

نویسندگان [English]

  • Mohammad Jalilimehr
  • Mohammad Moghiman
  • Hamid Niazmand
Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

In this paper, the effects of heating fuel (natural gas) directly in a gas-fired furnace equipped with a pre-combustor on soot production, luminosity, flame temperature and NOx emissions are investigated numerically and experimentally. Changing F1 and F2 (feeding) fuel rates, in constant total fuel flow rate, investigations were conducted for various F_1/F_total ratios. A probability density function (PDF) being parameterized by the mean and variance of mixture fraction was used to model chemical reactions. To describe the effects of turbulences on soot formation, a Moss–Brooks model and a 𝛽-PDF in terms of normalized temperature is employed. The results reveal that for F_1/F_total <50%, the luminosity of flame increases due to the incomplete combustion of the feeding fuel ensuing soot production. This causes Carbon monoxide (CO) emission to seriously increase. On the other hand, for F_1/F_total =85% the maximum solid carbon mass fraction increased by 9% and flame radiation increased by 15%. Also Nitrogen Oxides (NOx) emission decrease up to 52 ppm.

کلیدواژه‌ها [English]

  • "Direct heating"
  • " pre-combustion"
  • "Soot"
  • "luminosity"
  • " Pollutant emissions"
. N. A. Madlool, R. Saidur and N. Rahim, “Investigation of waste heat recovery in cementindustry,” Case Study Int. Engineering and Technology, 4, No. 5, 2012, pp.665-667.
2. S. Karellas, A.-D. Leontaritis, G. Panousis, E. Bellos, E. Kakaras, “Energetic and exergetic analysis of waste heat recovery systems in the cement industry,” Energy, 58, 2013, pp. 147-156.
3. P. Darabi, Mathematical  Model  for  Cement  Kilns,  Master of  Science Thesis, University of British Colombia, 2006.
4. P. V. Barr, J. K. Brimacombe and A. P. Watkinson, “Heat-Transfer Model for the Rotary Kiln: Part II. Development of the Cross-Section Model,” Metallurgical Transactions B, 20, 1989, pp. 403-419.
5. L. Xu, Y. Cheng, R. Yin and Q. Zhang,”Comparative study of regression modeling methods for online coal calorific value prediction from flame radiation featres”,Fuel,142, 2015,pp. 164-172.
6. S. H. Pourhoseini and M. Moghiman, “An experimental study on the effect of synchronous combustion of gasoil on luminosity and rdiative heat transfer of natural gas flame,” Modares Mechanical Engineering, 14, No. 15, 2015, PP. 11-16. (In persian).
7. S. M. Javadi and M. Moghiman, “Experimental study of natural gas temperature effects on the flame luminosity and no emission in a 120 kw boiler,” International journal of spray and combustion dynamics, 4, No. 2, 2012, pp. 175-184
8. L. Aisyaha, D. Ruliantoa and C. S. Wibowoa, “Analysis of the effect of preheating system to improve efficiency in lpg-fuelled small industrial burner, energy procedia,” Energy Procedia, 65, 2015, pp. 180-185.
9 S. H. Poorhoseini and M. Moghiman, “Effect of pulverized anthracite coal particles injection on thermal and radiative characteristics of natural gas flame: An experimental study,” Fuel, 140, No. 7, 2015, pp. 44-49.
10. M. A. Delichatsios and L. Orloff, “Effects of turbulence on flame radiation from diffusion flames,” Twenty-Second Symposium (International) on Combustion, The Combustion Institute, 1988, pp. 1271-1279.
11. D. Sequera and A. Agrawal, “Emissions and acoustics measurements in a Low-Swirl Burner,” 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007.
12 M. Jalilimehr, H. Behzadan, S. M. Javadi Mal Abad, M. Moghiman, and H. Niazmand. “Investigating the effects of natural gas preheating on soot formation, flame luminosity, and nox emissions: a combined experimental and numerical approach,” Heat Transfer Asian Research, 46, No. 7, 2017, pp. 895-912
.13. S. Abanades and G.  Flamant, “Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking,” Hydrogen Energy, 32, 2007, pp. 1508-1515.
14. A. Atreya, C. hang, H. K. Kim, T. Shamim, J. Suh, “The effect of changes in the flame structure on the formation and destruction of soot and NOx in radiating diffusion flames,” Symposium (International) on Combustion, 26, No. 2, 1996, pp. 2181-2189.
15. H. P. Mungekar and A. Atreya, “ Flame radiation and NO emission in partially premixed flames,” In Proceedings of the 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, 2001.
16. P. B. Taylor, P. J. Foster, “Some gray weighting coefficients forCO2-H2O-Soot mixtures,Heat Transfer, 18, 1974, pp. 1331-1332.
17. Ansys Inc., Ansys Fluent Theory guide, Release 15, Accessed on 28 December 2015, http://148.204.81.206/Ansys/readme.html.
18. Z. Wen and S. Yun, “Modeling soot formation in turbulent kerosene/air jet diffusion flames,” Combustion and Flame, 135, 2003, pp. 323-340.
19. J. Lim, J. Gore and R. Viskanta, “A study of the effects air preheat on the structure of methane/air counterflow diffusion flames,” Combustion and flame, 121, 2000, pp. 262-274.
20. BS EN 676 2003,  Automatic forced draught burners for gaseous fuels, European Standards 2003.
21. Testo Inc. Short Operation Instruction Manual (testo 350 M/XL): Rev.11/03 Instrument Software Version 1.30, Accessed on 10 July 2015; http://www.testo.com.
22. F. Nagamine, R. Shimokawa,  Y. Miyake, M. Nakata and K . Fujisawa, “Calibration of Pyranometers for the photovoltaic device field,” Applied Physics, 29, 1990, pp. 516-521.
23. Y. H. Lia, C. Y. Wub and Y. C. Chao, “Concept and combustion characteristics of the high-luminescence flame for thermophotovoltaic systems,” Proceedings of the Combustion Institute, 33, 2011, pp. 3447-3454.
24. K. Bashirnezhad, M. Moghiman, I. Zahmatkesh, “Studies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement”, Iranian journal of chemistry & chemical engineering –international English edition, 26, 2007, pp. 45-54.
25. A. Abánadesh, E. Ruiza, E. M. FerrueIoa and F. Hernández, “Experimental analysis of direct thermal methane cracking,” International Journal of Hydrogen Energy, 36, 2011, pp. 12877-12886.