مدلسازی تولید هیدروژن در راکتور غشایی-کاتالیزوری از طریق کاتالیزورهای مبتنی بر Ruبا MgO و Nb2O5 به عنوان پایه

نوع مقاله : مقاله پژوهشی

نویسنده

مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه

چکیده

ا
اصلاح گاز طبیعی با بخار، پرکاربردترین روش برای تولید هیدروژن موردنیاز صنایع شیمیایی است. افزایش تقاضا برای مصرف هیدروژن باعث توسعه فناوری­های جدید برای تولید هیدروژن شده ­است. یکی از فناوری­های پیشنهادی، استفاده از راکتور غشایی-کاتالیزوری به‌دلیل حذف هیدروژن از سمت واکنش و جلوگیری از دستیابی به شرایط تعادل است. این پژوهش به بررسی مدل سینتیکی با استفاده از کاتالیزورهای مبتنی بر Ru با MgO و Nb2O5 به عنوان پایه‌ می‌پردازد که فعالیت و گزینش‌پذیری فرایند را در محدوده دمایی Cº750-350 و محدوده فشاری bar 30-2 بهبود می‌دهند. اثر پارامترهای عملیاتی مختلف مانند دمای واکنش، فشار واکنش، نسبت متان به بخار آب، ضخامت غشاء و فاکتور گاز حامل بر درصد تبدیل متان و میزان تولید هیدروژن بررسی می­شود. بر اساس شاخص Δ، شرایط بهینه راکتور غشایی-کاتالیزوری در محدوده شرایط عملیاتی دمای Cº 475-410، فشار >=bar 20، ضخامت< μm 10، نسبت بخار به متان 2>m>3 و فاکتور گاز حامل =< 10 حاصل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of hydrogen production in catalytic membrane reactor through Ru-based catalysts with MgO and Nb2O5 as supports

نویسنده [English]

  • Amin Alamdari
Urmia University
چکیده [English]

Steam reforming of natural gas is the most used method to produce the hydrogen required for chemical industries. The increased demand for hydrogen consumption makes development of new technologies for hydrogen production. One of the proposed technologies is a catalytic membrane reactor due to removal of hydrogen from the reaction side and prevents the achievement of equilibrium conditions. This research investigates kinetic reaction model with utilization of Ru-based catalysts with MgO and Nb2O5 as the supports that develop the activity and selectivity of this reaction in the temperature range of 350ºC-750ºC and pressure range of 2-30 bar. The effects of different operational parameters such as temperature, pressure of the reaction, methane to steam ratio, membrane thickness, and sweep gas on total methane conversion and hydrogen production were studied. Based on the Δ-index, the optimum condition of catalytic membrane reactor was obtained within the operating condition ranges of temperature 410–475 0C, pressure ≥ 20 bar, thickness <10 μm, steam-to methane ratio 2< m < 3 and sweep factor s ≥ 10.
 

کلیدواژه‌ها [English]

  • Steam reforming
  • Hydrogen production
  • Catalytic membrane reactor
  • Ru-based catalysts
[1] E. Shagdar, B. G. Lougou, Y. Shuai, E. Ganbold, O. Paul Chinonso, and H. Tanab,“Process analysis of solar steam reforming of methane for producing low-carbon hydrogen,” RSC Advances., vol. 103, pp. 12582-12597, 2020.
[2] P. Zhang, J.  Zhang, and J. Gong, “Tantalum-based semiconductors for solar water splitting,” Chem Soc Rev., vol. 43, pp. 4395- 4422, 2014.
[3] C. Koroneos, A. Dompros, G. Roubmas, and N. Moussiopoulos, “Life cycle assessment of hydrogen fuel production processes,” Int J Hydrogen Energy., vol. 30, pp. 1429-1443, 2004.
[4] R. A. Sene, S. Sharifnia, and G.R. Moradi, “On the impact evaluation of various chemical treatments of support on the photocatalytic properties and hydrogen evolution of sonochemically synthesized TiO2/Clinoptilolite,” International Journal of Hydrogen Energy., vol. 43, pp. 695-707, 2017.
[5] R. A. Sene, G.R. Moradi, and S. Sharifnia, “Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods,” Ultrasonics Sonochemistry., vol. 37, pp. 490-501, 2017.
[6] R. A. Sene, S. Sharifnia, and G. Moradi, “Optimization of Hydrogen Production over TiO2/Treated Zeolite Nanophotocatalyst using Response Surface Box-Behnken Design,” Fuel and Combustion., vol. 14, pp. 17-32, 2021 (in Persian).
[7] M. Sharifi, M. Haghighi, N. Rahemi, and F. Rahmani, “A Comparative Synthesis and Physicochemical Characterizations of Ni/Al2O3 Nanocatalyst via Sequential Impregnation and Sol-Gel Methods Used for Dry Reforming of Methane,” Journal of Petroleoum Science., vol. 27, pp. 146-159, 2017 (in Persian).
[8] S. R. Yahyavi, M. Haghighi, S. Sahfiei, M. Abdollahifar, and F. Rahmani, “Synthesis of Ni-Co/Al2O3-MgO Nanocatalyst via Impregnation Method Used in Hydrogen Production via Dry Reforming of Methane,” Journal of Petroleum Science., vol. 37, pp. 21-32, 2018 (in Persian).
[9] P. Delir Khyrollahi Nezhad, M. Haghighi, and F. Rahmani, “CO2/O2-enhanced ethane dehydrogenation over a sol–gel synthesized Ni/ZrO2–MgO nanocatalyst: Effects of MgO, ZrO2,and NiO on the catalytic performance,” Particulate Science and Technology., vol. 36, pp. 1017-1028, 2018.
[10] S. M. Sajjadi , M. Haghighi , and F. Rahmani, “On the synergic effect of various anti-coke materials (Ca–K–W) and glow discharge plasma on Ni-based spinel nanocatalyst design for syngas production via hybrid CO/O reforming of methane,” Journal of Natural Gas Science and Engineering., vol. 108, pp. 104810-104825, 2022.
[11] W.H. Scholz, “Processes for industrial production of hydrogen and associated environmental effects,” Gas Separation and Purification., vol. 7, pp. 131–139, 1993.
[12] M.H. Halabi, M.H.J.M. De Croon, J. Van der Schaaf, P.D. Cobden, and J.C. Schouten, “Low temperature catalytic methane steam reforming over ceria zirconia supported rhodium,” Appl Catal A., vol. 389, pp. 68 -79, 2012.
[13] E.M. Assaf, C.D.F. Jesus, and J.M. Assaf, “Mathematical modeling of methane steam reforming in a membrane reactor: an isothermal model,” Braz. J. Chem. Eng., vol.15, pp. 160-166, 1998.
[14] F. A.N. Fernandes, and A. B. Soares Jr, “Methane steam reforming modeling in a palladium membrane reactor,” Fuel., vol. 85, pp. 569-573, 2006.
[15] L. Chibane, and B. Djellouli, “Methane steam reforming reaction behaviour in a packed bed membrane reactor,” International Journal of Chemical Engineering and Applications., vol. 2, pp. 147-156, 2011
[16] B.Vaferi, H.R.Karami, P.Darvishi, “Modeling of methane steam reforming reaction in tubular hydrogen permselective membrane reactor,” CTAIJ., Vol. 9, pp. 170-181, 2014.
[17] A.B. Shigarov, and V.A. Kirillov, “Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts,” Theor Found Chem Eng., vol. 46, pp. 97–107, 2012.
[18] F. S. Alrashed, S. A. Onaizi, F. S. Alenazey, S. El-Bok, and U. Zahid, “Modeling and Simulation of Prereformed Naphtha and Methane Steam Reforming in a Catalytic Membrane Reactor” Ind. Eng. Chem. Res., vol. 60, pp. 13661-13673, 2021.
[19] A.S. Kyriakides, D. Ipsakis, S. Voutetakis, S. Papadopoulou, and P. Seferlis, “Modelling and simulation of a membrane reactor for the low temperature methane steam reforming,”  Chemical Engineering Transactions., vol. 35, pp. 109-114, 2013.
[20] O. Yucel, and M.A. Hastaoglu “Comprehensive study of steam reforming of methane in membrane reactors,” J. Energy Resour. Technol., vol. 138, pp. 052204, 2016.
[21] J. G. Akpa, K. Raphael, A. O. Michael, and M.F.N. Abowei “Modelling of membrane reactor for methane steam reforming: an alternative to conventional reactors,” Global Scientific Journal., vol. 9, pp. 1466-1479, 2021.
[22] X. Wang, and R.J. Gorte, “The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction,” Appl Catal A., vol. 247, pp.157-162, 2003.
[23] A.E. Aksoylu, M.M.A. Freitas, and J.L. Figueiredo, “Bimetallic PteSn catalysts supported on activated carbon. II. CO oxidation,” Catal Today., vol. 62, pp. 337-346, 2000.
[24] C.H. Kim, and L.T. Thompson, “Deactivation of Au/CeOx water gas shift catalysts,” J Catal., vol. 230, pp. 66-74, 2005
[25] U. Amjad, A. Vita, C. Galletti, L. Pino, and S. Specchia, “Comparative Study on Steam and Oxidative Steam Reforming of Methane with Noble Metal Catalysts,” Ind. Eng. Chem. Res., vol. 44, pp. 15428–15436, 2013.
[26] A. Ersoz, H. Olgun, and S. Ozdogan, “Reforming options for hydrogen production from fossil fuels for PEM fuel cells,” Journal of Power Sources., vol. 154, pp. 67-73, 2006.
[27] S. Ahmed, and M. Krumpelt, “Hydrogen from hydrocarbon fuels for fuel cells,” International Journal of Hydrogen Energy., vol. 26, pp. 291-301, 2001.
[28] A. Faur Ghenciu, “Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems,” Current Opinion in Solid State and Materials Science., vol. 6, pp. 389-399, 2002.
[29] L. Barelli, G. Bidini, F. Gallorini, and S. Servili, “Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review,” Energy., vol. 33, pp. 554–570, 2008.
[30] P. Engelhardt, M. Maximini, F. Beckmann, and M. Brenner, “Integrated fuel cell APU based on a compact steam reformer for diesel and a PEMFC,” Int. J. Hydrogen Energy., vol. 37, pp. 13470–13477, 2012.
[31] M.A. Ashraf, G. Ercolino, S. Specchia, and V. Specchia, “Sensitivity and Economical Analysis of Fuel Processors Based on SR Integrated with WGS and PSA for Pure Hydrogen Production from Natural Gas,” Int. J. Hydrogen Energy., vol. 39, pp. 18109–18119, 2014.
[32] S. Eriksson, A. Schneider, J. Mantzaras, M. Wolf, and S. Järås, “Experimental and numerical investigation of supported rhodium catalysts for partial oxidation of methane in exhaust gas diluted reaction mixtures,” Chemical Engineering Science., vol. 62, pp. 3991-4011, 2007.
[33] D.K. Liguras, D.I., Kondarides, and X.E. Verykios, “Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts,” Appl. Catal. B: Environ., vol. 43, pp. 345–354, 2003.
[34] M.A. Nieva, M.M. Villaverde, A. Monzón, T.F. Garetto, and A.J. Marchi, “Steam-methane reforming at low temperature on nickel-based catalysts,” Chem. Eng. J., vol. 235, pp. 158–166, 2014.
[35] A.S. Vita, G. Cristiano, C. Italiano, S. Specchia, F. Cipitì, and V. Specchia, “Methane oxy-steam reforming reaction: Performances of Ru/γ-Al2O3 catalysts loaded on structured cordierite monoliths,” Int. J. Hydrogen Energy., vol. 39, pp. 18592–18603, 2014.
[36] J.H. Jeong, J.W. Lee, D.J., Seo, Y., W.L. Seo, W.L. Yoon, D.K. Lee, and D.H. Kim, “Ru-doped Ni catalysts effective for the steam reforming of methane without the pre-reduction treatment with H2,” Appl. Catal. A: Gen., vol. 302, pp. 151–156, 2006.
[37] H.C. Lee, Y. Potapova, and D. Lee, “A core-shell structured, metal-ceramic composite-supported Ru catalyst for methane steam reforming,” J. Power Sources., vol. 216, pp. 256 – 260, 2012.
[38] U. Amjad, G.G. Lenzi, N.R.C.F. Machadoc, and S. Specchia, “MgO and Nb2O5 oxides used as supports for Ru-based catalysts for the methane steam reforming reaction,” Catalysis Today., vol.257, pp. 122–130, 2015.
[39] F.A.N. Fernandes, and J.A.B. Soares, “Methane steam reforming modeling in a palladium membrane reactor,” Fuel., vol.85, pp. 569–573, 2006.
[40] S. Hara, K. Haraya, G. Barbieri, and E. Drioli, “Reaction rate profiles in long palladium membrane reactors for methane steam reforming,” Desalination., vol. 233, pp. 359–366, 2008.
[41] M.E. Ayturk, N.K. Kazantzisa, and Y.H. Ma, “Modeling and performance assessment of Pd- and Pd/Au-based catalytic membrane reactors for hydrogen production,” Energy Environ. Sci., vol. 2, pp. 430-438, 2009.