سنتز هیبریدی مایکروویو- احتراقی نانوکاتالیست CuO/ZnO/Al2O3 در غلظت های مختلفی از اکسیژن جهت تولید هیدروژن از متانول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی سهند

2 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند

چکیده

روش سنتز هیبریدی مایکروویو - احتراقی به‌عنوان یکی از روش‌های آسان، موثر و سریع برای تولید نانوکاتالیست‌ها‌ شناخته شده است. در این تحقیق، اثر اتمسفر احتراق بر روی خواص فیزیکی – شیمیایی و کاتالیستی نانوکاتالیست‌های CuO/ZnO/Al2O3 به‌عنوان کاتالیست‌های فرایند ریفورمینگ متانول با بخار آب مورد بررسی قرار گرفته است. بدین منظور سه نوع نانوکاتالیست با غلظت‌ها‌های مختلف اکسیژن اتمسفر در سنتز هیبریدی مایکروویو – احتراقی تهیه شد. خواص فیزیکی – شیمیایی نانوکاتالیست‌های سنتزی توسط آنالیزهای XRD، FESEM، EDX، BET و FTIR مطالعه شد. مشخص شد که بلورینگی گونه‌ها‌ی مس کمتر از دیگر نمونه‌ها‌ بوده که منجر به پراکندگی بیشتر سایت‌های مس به‌عنوان مراکز مهم واکنش ریفورمینگ متانول با بخارآب شناخته می‌شوند. علاوه بر این مساحت سطح بیشتر و مورفولوژی سطح بهتر نمونه CZA-O60N40 منجر به تبدیل متانول بالاتر شده است. ولی پراکندگی صفحه بلوری Zn(100) منجر به تولید منوکسید کربن به‌عنوان محصول نامطلوب شده است.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hybrid Microwave-Combustion Synthesis of CuO/ZnO/Al2O3 Nanocatalyst Using Various Oxygen Contents for Hydrogen Production from Methanol

نویسندگان [English]

  • Hossein Ajamein 1
  • Mohammad Haghighi 2
1 Sahand University of Technology
2 Chemical Engineering Faculty, Sahand University of Technology,
چکیده [English]

The hybrid microwave-combustion synthesis method is a facile and rapid pathway for fabrication of nanocatalysts. In this study, the effect of combustion atmosphere on physicochemical and catalytical properties of CuO/ZnO/Al2O3 nanocatalysts as the catalysts of the steam methanol reforming process was investigated. For this aim, three types of nanocatalysts under different oxygen concentration atmosphere were prepared. The characteristic properties of synthesized nanocatalysts were studied by XRD, FESEM, EDX, BET, and FTIR analyses. It was understood that the crystallinity of copper species is lower than the other samples which led to higher dispersion of copper sites as the main core for steam methanol reforming reaction. Moreover, higher surface area and better surface morphology of CZA-O60N40 resulted in higher methanol conversion. Nevertheless, its higher dispersion of Zn(100) crystallite facet led to more CO production as the undesired product.

کلیدواژه‌ها [English]

  • CuO-ZnO-Al2O3 Nanocatalyst
  • Microwave Assisted Combustion
  • Oxygen Content
  • Methanol
  • Hydrogen
  1. 1.Aydinyan, S., Kirakosyan, H., Sargsyan, A., Volobujeva, O. and Kharatyan, S., “Solution combustion synthesis of MnFeCoNiCu and (MnFeCoNiCu)3O4 high entropy materials and sintering thereof”. Ceramics International, Vol. 48, 2022,  pp.20294-20305.

    1. Alaei, S., Haghighi, M., Rahmanivahid, B., Shokrani, R., and Naghavi, H., “Conventional Vs. Hybrid Methods for Dispersion of Mgo over Magnetic Mg–Fe Mixed Oxides Nanocatalyst in Biofuel Production from Vegetable Oil”, Renewable Energy, Vol. 154, 2020, pp. 1188-1203.
    2. Rahmani Vahid, B. and Haghighi, M., “Urea-Nitrate Combustion Synthesis of Mgo/Mgal2o4 Nanocatalyst Used in Biodiesel Production from Sunflower Oil: Influence of Fuel Ratio on Catalytic Properties and Performance”, Energy Conversion and Management, Vol. 126, 2016, pp. 362-372.
    3. Ahmadi, Faezeh, Mohammad Haghighi, and Hossein Ajamein. “Sonochemically coprecipitation synthesis of CuO/ZnO/ZrO2/Al2O3 nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming”. Journal of Molecular Catalysis A: Chemica,l, Vol. 421, 2016, pp.196-208.
    4. Baneshi, J., Haghighi, M., Ajamein, H., and Abdollahifar, M., “Homogeneous Precipitation and Urea-Nitrate Combustion Preparation of Nanostructured Cuo/Ceo2/Zro2/Al2o3 Oxides Used in Hydrogen Production from Methanol for Fuel Cells”, Particulate Science and Technology, Vol. 38, 2020, pp. 464-474.
    5. Khort, A., Roslyakov, S., and Loginov, P., “Solution Combustion Synthesis of Single-Phase Bimetallic Nanomaterials”, Nano-Structures & Nano-Objects, Vol. 26, 2021, pp. 100727-100731.
    6. Novitskaya, E., Kelly, J.P., Bhaduri, S., and Graeve, O.A., “A Review of Solution Combustion Synthesis: An Analysis of Parameters Controlling Powder Characteristics”, International Materials Reviews, Vol. 66, 2021, pp. 188-214.
    7. Mohammadpour, M., Haghighi, M., and Shokrani, R., “Influence of Heating Approach (Microwave Vs. Muffle Furnace) and Fuel in Auto-Combustion Design of Nanostructured Ca2Mn3O8 as Support for Efficient and Reusable Catalyst Used in Green Fuel Production”, Ceramics International, Vol. 46, 2020, pp. 12180-12191.
    8. Parauha, Y.R., Sahu, V., and Dhoble, S.J., “Prospective of Combustion Method for Preparation of Nanomaterials: A Challenge”, Materials Science and Engineering: B, Vol. 267, 2021, pp. 115054-115082.
    9. Nersisyan, H.H., Lee, J.H., Ding, J.-R., Kim, K.-S., Manukyan, K.V., and Mukasyan, A.S., “Combustion Synthesis of Zero-, One-, Two- and Three-Dimensional Nanostructures: Current Trends and Future Perspectives”, Progress in Energy and Combustion Science, Vol. 63, 2017, pp. 79-118.
    10. Deganello, F. and Tyagi, A.K., “Solution Combustion Synthesis, Energy and Environment: Best Parameters for Better Materials”, Progress in Crystal Growth and Characterization of Materials, Vol. 64, 2018, pp. 23-61.
    11. Shokrani, R., Haghighi, M., Ajamein, H., and Abdollahifar, M., “Hybrid Sonochemic Urea-Nitrate Combustion Preparation of CuO/ZnO/Al2O3 Nanocatalyst Used in Fuel Cell Grade Hydrogen Production from Methanol: Effect of Sonication and Fuel/Nitrate Ratio”, Particulate Science and Technology, Vol. 36, 2018, pp. 217-225.
    12. Ajamein, H. and Haghighi, M., “Influence of Ambient Gas on Microwave-Assisted Combustion Synthesis of CuO–ZnO–Al2O3 Nanocatalyst Used in Fuel Cell Grade Hydrogen Production Via Methanol Steam Reforming”, Ceramics International, Vol. 42, 2016, pp. 17978-17989.
    13. Ajamein, H. and Haghighi, M., “On the Microwave Enhanced Combustion Synthesis of Cuo-Zno-Al2o3 Nanocatalyst Used in Methanol Steam Reforming for Fuel Cell Grade Hydrogen Production: Effect of Microwave Irradiation and Fuel Ratio”, Energy Conversion and Management, Vol. 118, 2016, pp. 231-242.
    14. Li, C., Hu, Y., and Yuan, W., “Nanomaterials Synthesized by Gas Combustion Flames: Morphology and Structure”, Particuology, Vol. 8, 2010, pp. 556-562.
    15. Aruna, S.T. and Mukasyan, A.S., “Combustion Synthesis and Nanomaterials“, Current Opinion in Solid State and Materials Science, Vol. 12, 2008, pp. 44-50.
    16. Amani, T., Haghighi, M., and Rahmanivahid, B., “Microwave-Assisted Combustion Design of Magnetic Mg–Fe Spinel for Mgo-Based Nanocatalyst Used in Biodiesel Production: Influence of Heating-Approach and Fuel Ratio”, Journal of Industrial and Engineering Chemistry, Vol. 80, 2019, pp. 43-52.
    17. Nayebzadeh, H., Haghighi, M., Saghatoleslami, N., Alaei, S., and Yousefi, S., “Texture/Phase Evolution During Plasma Treatment of Microwave-Combustion Synthesized Koh/Ca12al14o33-C Nanocatalyst for Reusability Enhancement in Conversion of Canola Oil to Biodiesel”, Renewable Energy, Vol. 139, 2019, pp. 28-39.
    18. Shareh, F.B., Kazemeini, M., Asadi, M., and Fattahi, M., “Metal Promoted Mordenite Catalyst for Methanol Conversion into Light Olefins”, Petroleum Science and Technology, Vol. 32, 2014, pp. 1349-1356.
    19. Monai, M., Montini, T., Melchionna, M., Duchoň, T., Kúš, P., Chen, C., Tsud, N., Nasi, L., Prince, K.C., Veltruská, K., Matolín, V., Khader, M.M., Gorte, R.J., and Fornasiero, P., “The Effect of Sulfur Dioxide on the Activity of Hierarchical Pd-Based Catalysts in Methane Combustion“, Applied Catalysis B: Environmental, Vol. 202, 2017, pp. 72-83.
    20. Lv, D., Zhang, D., Pu, X., Kong, D., Lu, Z., Shao, X., Ma, H., and Dou, J., “One-Pot Combustion Synthesis of Bivo4/Biocl Composites with Enhanced Visible-Light Photocatalytic Properties”, Separation and Purification Technology, Vol. 174, 2017, pp. 97-103.
    21. Sreekanth Chakradhar, R.P., Nagabhushana, B.M., Chandrappa, G.T., Ramesh, K.P., and Rao, J.L., “Solution Combustion Derived Nanocrystalline Macroporous Wollastonite Ceramics”, Materials Chemistry and Physics, Vol. 95, 2006, pp. 169-175.
    22. Kiran, V.S. and Sumathi, S., “Comparison of Catalytic Activity of Bismuth Substituted Cobalt Ferrite Nanoparticles Synthesized by Combustion and Co-Precipitation Method”, Journal of Magnetism and Magnetic Materials, Vol. 421, 2017, pp. 113-119.
    23. Chen, F., Xie, S., Huang, X., and Qiu, X., “Ionothermal Synthesis of Fe3O4 Magnetic Nanoparticles as Efficient Heterogeneous Fenton-Like Catalysts for Degradation of Organic Pollutants with H2O2”, Journal of Hazardous Materials, Vol. 322, 2017, pp. 152-162.
    24. B, S.P., Parthasarathi, B., S, S.K., and S.T, A., “Microstructure and Electrical Properties of Plasma Sprayed Gd0.15Ce0.85O2 Coatings from Solution Combustion Synthesized Flowable Powders”, Journal of the European Ceramic Society, Vol. 37, 2017, pp. 271-279.
    25. Shokrani, R., Haghighi, M., Jodeiri, N., Ajamein, H., and Abdollahifar, M., “Fuel Cell Grade Hydrogen Production Via Methanol Steam Reforming over Cuo/Zno/Al2o3 Nanocatalyst with Various Oxide Ratios Synthesized Via Urea-Nitrates Combustion Method”, International Journal of Hydrogen Energy, Vol. 39, 2014, pp. 13141-13155.
    26. Baneshi, J., Haghighi, M., Jodeiri, N., Abdollahifar, M., and Ajamein, H., “Urea-Nitrate Combustion Synthesis of ZrO2 and CeO2 Doped CuO/Al2O3 Nanocatalyst Used in Steam Reforming of Biomethanol for Hydrogen Production”, Ceramics International, Vol. 40, 2014, pp. 14177-14184.
    27. Liu, G., Li, J., and Chen, K., “Combustion Synthesis of Refractory and Hard Materials: A Review”, International Journal of Refractory Metals and Hard Materials, Vol. 39, 2013, pp. 90-102.
    28. Srinatha, N., Dinesh Kumar, V., Nair, K.G.M., and Angadi, B., “The Effect of Fuel and Fuel-Oxidizer Combinations on Zno Nanoparticles Synthesized by Solution Combustion Technique”, Advanced Powder Technology, Vol. 26, 2015, pp. 1355-1363.
    29. Tarragó, D.P., Malfatti, C.d.F., and de Sousa, V.C., “Influence of Fuel on Morphology of Lsm Powders Obtained by Solution Combustion Synthesis”, Powder Technology, Vol. 269, 2015, pp. 481-487.
    30. Sherikar, B.N., Sahoo, B., and Umarji, A.M., “Effect of Fuel and Fuel to Oxidizer Ratio in Solution Combustion Synthesis of Nanoceramic Powders: MgO, CaO and ZnO”, Solid State Sciences, Vol. 109, 2020, pp. 106426-106433.
    31. Garmroudi Nezhad, E., Kermani, F., Mollaei, Z., Mashreghi, M., Vahdati Khakhi, J., and Mollazadeh, S., “Interference of Oxygen During the Solution Combustion Synthesis Process of Zno Particles: Experimental and Data Modeling Approaches“, Journal of Industrial and Engineering Chemistry, Vol. 107, 2022, pp. 224-238.
    32. Amarilla, J.M., Rojas, R.M., and Rojo, J.M., “Understanding the Sucrose-Assisted Combustion Method: Effects of the Atmosphere and Fuel Amount on the Synthesis and Electrochemical Performances of Lini0.5mn1.5o4 Spinel”, Journal of Power Sources, Vol. 196, 2011, pp. 5951-5959.
    33. González-Cortés, S.L. and Imbert, F.E., “Fundamentals, Properties and Applications of Solid Catalysts Prepared by Solution Combustion Synthesis (Scs)“, Applied Catalysis A: General, Vol. 452, 2013, pp. 117-131.
    34. Toniolo, J., Takimi, A.S., Andrade, M.J., Bonadiman, R., and Bergmann, C.P., “Synthesis by the Solution Combustion Process and Magnetic Properties of Iron Oxide (Fe3O4 and Α-Fe2O3) Particles”, Journal of materials science, Vol. 42, 2007, pp. 4785-4791.
    35. Mahzoon, S., Haghighi, M., Nowee, M., and Zeinalzadeh, H., “Sonoprecipitation Design of Novel Efficient All-Solid Z-Scheme Cu(Oh)2/Cu2o/C3n4 Nanophotocatalyst Applied in Water Splitting for H2 Production: Synergetic Effect of Cu-Based Cocatalyst (Cu(Oh)2) and Electron Mediator (Cu)“, Solar Energy Materials and Solar Cells, Vol. 219, 2021, pp. 110772.
    36. Abbasi, E., Haghighi, M., Shokrani, R., and Shabani, M., “Copper Plasmon-Induced Cu-Doped Zno-Cuo Double-Nanoheterojunction: In-Situ Combustion Synthesis and Photo-Decontamination of Textile Effluents“, Materials Research Bulletin, Vol. 129, 2020, pp. 110880-110894.
    37. Greeley, J. and Mavrikakis, M., “Methanol Decomposition on Cu(111): A Dft Study“, Journal of Catalysis, Vol. 208, 2002, pp. 291-300.
    38. Krajčí, M., Tsai, A.P., and Hafner, J., “Understanding the Selectivity of Methanol Steam Reforming on the (1 1 1) Surfaces of Nizn, Pdzn and Ptzn: Insights from Dft“, Journal of Catalysis, Vol. 330, 2015, pp. 6-18.
    39. Patel, S. and Pant, K.K., “Experimental Study and Mechanistic Kinetic Modeling for Selective Production of Hydrogen Via Catalytic Steam Reforming of Methanol“, Chemical Engineering Science, Vol. 62, 2007, pp. 5425-5435.
    40. Li, X. and Lim, K.H., “Dft Study of Steam Reforming of Formaldehyde on Cu, Pdzn, and Ir“, ChemCatChem, Vol. 4, 2012, pp. 1311-1320.
    41. Ajamein, H., Haghighi, M., Minaei, S., and Alaei, S., “Texture/Phase Evolution During Microwave Fabrication of Nanocrystalline Multicomponent (Cu/Zn/Al)O Metal Oxides with Varying Diethylene Glycol Content Applied in Hydrogen Production“, International Journal of Hydrogen Energy, Vol. 43, 2018, pp. 22838-22851.
    42. Zarrabi, M., Haghighi, M., and Alizadeh, R., “Sonoprecipitation Dispersion of ZnO Nanoparticles over Graphene Oxide Used in Photocatalytic Degradation of Methylene Blue in Aqueous Solution: Influence of Irradiation Time and Power“, Ultrasonics Sonochemistry, Vol. 48, 2018, pp. 370-382.
    43. Allahyari, S., Haghighi, M., and Ebadi, A., “Direct Synthesis of Dme over Nanostructured CuO-ZnO-Al2O3/Hzsm-5 Catalyst Washcoated on High Pressure Microreactor: Effect of Catalyst Loading and Process Condition on Reactor Performance“, Chemical Engineering Journal, Vol. 262, 2015, pp. 1175-1186.