بررسی اثر مدل‌سازی وردایی متغیر پیشرفت واکنش در شبیه سازی گردابه ‎های بزرگِ شعله آشفته پیش‌مخلوط با مدل خمینه تولیدی ریزشعله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شریف مهندسی هوافضا

2 دانشکده هوافضا، دانشگاه صنعتی شریف، تهران، ایران

چکیده

این مقاله با دو هدف مرور ادبیات روش‌های مدل‌سازی احتراق بر مبنای فرض ریزشعله آرام و همچنین پیاده سازی، به‌کارگیری و آنالیز حساسیت یکی از این روش‌ها برای شبیه‌سازی شعله‌های پیش‌مخلوط نوشته شده است. امروزه یکی از قابل اعتمادترین روش‌ها برای شبیه‌سازی آشفتگی، روش شبیه‌سازی گردابه‌های بزرگ است. نظر به اینکه هزینه محاسباتی این روش به مراتب بیشتر از روش‌های معمولِ رینولدز- متوسط است، کم‌هزینه‌ترین و در نتیجه پرکاربردترین مدل‌های احتراقی در شبیه‌سازی گردابه‌های بزرگ روش‌هایی بر پایه فرض ریزشعه آرام است. این روش‌ها در عین حال محدودیت‌هایی نیز دارند که در این پژوهش به تفصیل مورد بحث و بررسی قرار گرفته‌اند. روش خمینه تولیدی ریزشعله یکی از این روش‌هاست که در این پژوهش به کمک مدلِ شبیه‌سازی گردابه‌های بزرگ در یک شعله پشت جسم مانع مورد استفاده قرار گرفته است. نتایج نشان می‌دهد که دقت این روش حساسیت قابل توجهی به مدل زیرشبکه وردایی متغیر پیشرفت واکنش و ثابت آن دارد. مدل جبریِ تخمین وردایی زیرشبکه متغیر پیشرفت واکنش از دقت کافی برای شبیه‌سازی برخوردار نمی‎باشد، به‌گونه‌ای که طول شعله حدودا 30 درصد کمتر از مقدار واقعی پیش‌بینی‌ می‌شود و سرعت محوری در بعضی نقاط تا بیش از 60 درصد خطا دارد. از سوی دیگر در صورت حل معادله انتقال برای وردایی متغیر پیشرفت دقت نتایج شبیه‌سازی افزایش قابل ملاحظه‌ای دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of the progress variable variance modelling on large-eddy simulation of turbulent premixed flames using flamelet-generated manifold model

نویسنده [English]

  • Hassan Atayizadeh 2
1
2 Aerospace Engineering Department, Sharif University of Technology, Tehran, Iran
چکیده [English]

The objective of this paper is two-fold: a comprehensive literature review of the combustion model based on the laminar flamelet assumption; and implementation, application and sensitivity analysis of one of these flamelet models for simulation of turbulent premixed flames. Large-eddy simulation is one of the most reliable approaches in turbulence modelling. Since the computational cost of this approach is substantially more significant than the Reynolds-averaged Navier-Stokes models, the most economical and thus widely-used combustion models in the context of large-eddy simulation are models based on the flamelet assumption. Nevertheless, flamelet models have known shortcomings presented and discussed in detail in this work. The Flamelet-Generated Manifold (FGM) model is one of these models utilized in this work for a large-eddy simulation of a turbulent flame stabilized behind a bluff body. The results show that the accuracy of this model depends on the sub-grid scale variance sub-model its parameters. An algebraic model was used to approximate the variance, but the results were not accurate enough; so that the flame height was under-estimated by approximately 30%, and the error in the mean axial velocity was more than 60% at some points in the domain. However, solving a transport equation for this quantity improves the accuracy of the predictions.

کلیدواژه‌ها [English]

  • Turbulent combustion
  • combustion modelling
  • flamelet model
  • large-eddy simulation
  1. Poinsot and D. Veynante, Theoretical and Numerical Combustion. R.T. Edwards, Inc., 2005.
  2. A. N. Gorban and G. S. Yablonsky, “Three Waves of Chemical Dynamics,” Math. Model. Nat. Phenom., 10, 2015.
  3. R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst., 30, 2005, pp. 21–42.
  4. Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin, “GRI-MECH 3.0.” Available Online: http://www.me.berkeley.edu/gri_mech/
  5. C. K. Law, Combustion Physics, First Edition, Cambridge, Cambridge University Press, 2010.
  6. U. Maas and S. B. Pope, “Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space,” Combust. Flame, 88, 1992, pp. 239–264.
  7. S. B. Pope, “Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation,” Combust. Theory Model., 1, 1997, pp. 41–63.
  8. Z. Ren, S. B. Pope, A. Vladimirsky, and J. M. Guckenheimer, “The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics,” J. Chem. Phys., 124, 2006, p. 114111.
  9. N. Peters, “Laminar diffusion flamelet models in non-premixed turbulent combustion,” Prog. Energy Combust. Sci., 10, 1984, pp. 319–339.
  10. J. A. van Oijen and L. P. H. de Goey, “Modelling of premixed counterflow flames using the flamelet-generated manifold method,” Combust. Theory Model., 6, 2002, pp. 463–478.
  11. O. Gicquel, N. Darabiha, and D. Thévenin, “Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion,” Proc. Combust. Inst., 28, 2000, pp. 1901–1908.
  12. H. Pitsch, M. Chen, and N. Peters, “Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames,” Proc. Combust. Inst., 27, 1998, pp. 1057–1064.
  13. C. D. Pierce and P. Moin, “Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion,” J. Fluid Mech., 504, 2004, pp. 73–97.
  14. M. Ihme, C. M. Cha, and H. Pitsch, “Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach,” Proc. Combust. Inst., 30, 2005, pp. 793–800.
  15. J. C. Massey, I. Langella, and N. Swaminathan, “Large Eddy Simulation of a Bluff Body Stabilised Premixed Flame Using Flamelets,” Flow Turbul. Combust., 101, 2018, pp. 1–20.
  16. I. Langella, N. Swaminathan, and R. W. Pitz, “Application of unstrained flamelet SGS closure for multi-regime premixed combustion,” Combust. Flame, 173, 2016, pp. 161–178.
  17. D. Bradley, L. K. Kwa, A. K. C. Lau, M. Missaghi, and S. B. Chin, “Laminar flamelet modeling of recirculating premixed methane and propane-air combustion,” Combust. Flame, 71, 1988, pp. 109–122.
  18. H. Kolla and N. Swaminathan, “Strained flamelets for turbulent premixed flames, I: Formulation and planar flame results,” Combust. Flame, 157, 2010, pp. 943–954.
  19. E. Knudsen, H. Kolla, E. R. Hawkes, and H. Pitsch, “LES of a premixed jet flame DNS using a strained flamelet model,” Combust. Flame, 160, 2013, pp. 2911–2927.
  20. A. H. Mahdipour and M. M. Salehi, “A Priori Evaluation of the Laminar Flamelet Decomposition Model for Turbulent Premixed Flames using DNS Data,” Flow Turbul. Combust., 108, 2022, pp. 149–180.
  21. S. Ghosal and L. Vervisch, “Stability diagram for lift-off and blowout of a round jet laminar diffusion flame,” Combust. Flame, 124, 2001, pp. 646–655.
  22. C. Bekdemir, L. M. T. Somers, and L. P. H. de Goey, “Modeling diesel engine combustion using pressure dependent Flamelet Generated Manifolds,” Proc. Combust. Inst., 33, 2011, pp. 2887–2894.
  23. P.-D. Nguyen, L. Vervisch, V. Subramanian, and P. Domingo, “Multidimensional flamelet-generated manifolds for partially premixed combustion,” Combust. Flame, 157, 2010, pp. 43–61.
  24. G. R. Hendra and W. K. Bushe, “The uniform conditional state model for turbulent reacting flows,” Combust. Flame, 205, 2019, pp. 484–505.
  25. M. E. Mueller, “Physically-derived reduced-order manifold-based modeling for multi-modal turbulent combustion,” Combust. Flame, 214, 2020, pp. 287–305.
  26. E. Knudsen and H. Pitsch, “A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion,” Combust. Flame, 156, 2009, pp. 678–696.
  27. A. Donini, R. J. M. Bastiaans, J. A. van Oijen, and L. P. H. de Goey, “A 5-D Implementation of FGM for the Large Eddy Simulation of a Stratified Swirled Flame with Heat Loss in a Gas Turbine Combustor,” Flow Turbul. Combust., 98, 2017, pp. 887–922.
  28. K. N. C. Bray, M. Champion, P. A. Libby, and N. Swaminathan, “Finite rate chemistry and presumed PDF models for premixed turbulent combustion,” Combust. Flame, 146, 2006, pp. 665–673.
  29. B. Jin, R. Grout, and W. K. Bushe, “Conditional Source-Term Estimation as a Method for Chemical Closure in Premixed Turbulent Reacting Flow,” Flow Turbul. Combust., 81, 2008, pp. 563–582.
  30. P. Domingo, L. Vervisch, S. Payet, and R. Hauguel, “DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry,” Combust. Flame, 143, 2005, pp. 566–586.
  31. M. M. Salehi and W. K. Bushe, “Presumed PDF modeling for RANS simulation of turbulent premixed flames,” Combust. Theory Model., 14, 2010, pp. 381–403.
  32. H. P. Tsui and W. K. Bushe, “Linear-Eddy Model Formulated Probability Density Function and Scalar Dissipation Rate Models for Premixed Combustion,” Flow Turbul. Combust., 93, 2014, pp. 487–503.
  33. M. Pfitzner, “A New Analytic PDF for Simulations of Premixed Turbulent Combustion,” Flow Turbul. Combust., 106, 2020, pp. 1213-1239.
  34. A. Soli, I. Langella, and Z. X. Chen, “Analysis of Flame Front Breaks Appearing in LES of Inhomogeneous Jet Flames Using Flamelets,” Flow Turbul. Combust., 108, 2022, pp. 1159-1190.
  35. M. Ghadimi, H. Atayizadeh, and M. M. Salehi, “Presumed Joint-PDF Modelling for Turbulent Stratified Flames,” Flow Turbul. Combust., 107, 2021, pp. 405–439.
  36. S. Ruan, N. Swaminathan, and O. Darbyshire, “Modelling of turbulent lifted jet flames using flamelets: a priori assessment and a posteriori validation,” Combust. Theory Model., 18, 2014, pp. 295–329.
  37. W. K. Bushe, C. Devaud, and J. Bellan, “A priori evaluation of the Double-conditioned Conditional Source-term Estimation model for high-pressure heptane turbulent combustion using DNS data obtained with one-step chemistry,” Combust. Flame, 217, 2020, pp. 131–151.
  38. O. R. Darbyshire and N. Swaminathan, “A Presumed Joint PDF Model for Turbulent Combustion with Varying Equivalence Ratio,” Combust. Sci. Technol., 184, 2012, pp. 2036–2067.
  39. M. T. H. de Frahan, S. Yellapantula, R. King, M. S. Day, and R. W. Grout, “Deep learning for presumed probability density function models,” Combust. Flame, 208, 2019, pp. 436–450.
  40. A. Mousemi and W. Kendal Bushe, “The joint probability density function of mixture fraction, reaction progress variable, and total enthalpy in a stratified, swirl-stabilized turbulent flame,” Phys. Fluids, 33, 2021, p. 035106.
  41. A. W. Vreman, J. A. van Oijen, L. P. H. de Goey, and R. J. M. Bastiaans, “Subgrid Scale Modeling in Large-Eddy Simulation of Turbulent Combustion Using Premixed Flamelet Chemistry,” Flow Turbul. Combust., 82, 2009, pp. 511–535.
  42. T. D. Dunstan, Y. Minamoto, N. Chakraborty, and N. Swaminathan, “Scalar dissipation rate modelling for Large Eddy Simulation of turbulent premixed flames,” Proc. Combust. Inst., 34, 2013, pp. 1193–1201.
  43. C. Developers, “One-dimensional Flames,” CANTERA, Feb. 09, 2022. https://cantera.org/science/flames.html.
  44. B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier, and N. Darabiha, “Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM,” Combust. Theory Model., 7, 2003, pp. 449–470.
  45. G. V. Nivarti, J. Huang, and W. K. Bushe, “Conditional Source-Term Estimation for the Numerical Simulation of Turbulent Combustion in Homogeneous-Charge SI Engines,” SAE 2014 International Powertrain, Fuels & Lubricants Meeting, Warrendale, PA, USA, Oct. 2014.
  46. M. Ihme, L. Shunn, and J. Zhang, “Regularization of reaction progress variable for application to flamelet-based combustion models,” J. Comput. Phys., 231, 2012, pp. 7715–7721.
  47. G. Lodier, L. Vervisch, V. Moureau, and P. Domingo, “Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds,” Combust. Flame, 158, 2011, pp. 2009–2016.
  48. A. Scholtissek, P. Domingo, L. Vervisch, and C. Hasse, “A self-contained composition space solution method for strained and curved premixed flamelets,” Combust. Flame, 207, 2019, pp. 342–355.
  49. J. A. van Oijen, F. A. Lammers, and L. P. H. de Goey, “Modeling of complex premixed burner systems by using flamelet-generated manifolds,” Combust. Flame, 127, 2001, pp. 2124–2134.
  50. H. Pitsch, “Large-eddy simulation of turbulent combustion,” Annu Rev Fluid Mech, 38, 2006, pp. 453–482.
  51. M. Mahdi Salehi, W. Kendal Bushe, N. Shahbazian, and C. P. T. Groth, “Modified laminar flamelet presumed probability density function for LES of premixed turbulent combustion,” Proc. Combust. Inst., 34, 2013, pp. 1203–1211.
  52. N. Swaminathan and R. W. Bilger, “Analyses of conditional moment closure for turbulent premixed flames,” Combust. Theory Model., 5, 2001, pp. 241–260.
  53. J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, and P. Domingo, “Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner,” Combust. Flame, 155, 2008, pp. 247–266.
  54. G. Lecocq, S. Richard, O. Colin, and L. Vervisch, “Hybrid presumed PDF and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion: Part 1: Formalism and simulation of a quasi-steady burner,” Combust. Flame, 158, 2011, pp. 1201–1214.
  55. F. E. Hernández-Pérez, C. P. T. Groth, and Ö. L. Gülder, “Large-eddy simulation of lean hydrogen–methane turbulent premixed flames in the methane-dominated regime,” Int. J. Hydrog. Energy, 39, 2014, pp. 7147–7157.
  56. A. Donini, R. J. M. Bastiaans, J. A. van Oijen, and L. P. H. de Goey, “Numerical Simulations of a Turbulent High-Pressure Premixed Cooled Jet Flame With the Flamelet Generated Manifolds Technique,” J. Eng. Gas Turbines Power, 137, 2015, pp. 071501-071509.
  57. G. M. Ottino, A. Fancello, M. Falcone, R. J. M. Bastiaans, and L. P. H. de Goey, “Combustion Modeling Including Heat Loss Using Flamelet Generated Manifolds: A Validation Study in OpenFOAM,” Flow Turbul. Combust., 96, 2016, pp. 773–800.
  58. D. Farrace, K. Chung, S. S. Pandurangi, Y. M. Wright, K. Boulouchos, and N. Swaminathan, “Unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off,” Proc. Combust. Inst., 36, 2017, pp. 1977–1985.
  59. Z. Chen, S. Ruan, and N. Swaminathan, “Large Eddy Simulation of flame edge evolution in a spark-ignited methane–air jet,” Proc. Combust. Inst., 36, 2017, pp. 1645–1652.
  60. N. Peters, “The turbulent burning velocity for large-scale and small-scale turbulence,” J. Fluid Mech., 384, 1999, pp. 107–132.
  61. M. J. Dunn, A. R. Masri, R. W. Bilger, R. S. Barlow, and G.-H. Wang, “The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow,” Proc. Combust. Inst., 32, 2009, pp. 1779–1786.
  62. F. T. C. Yuen and Ö. L. Gülder, “Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis,” Proc. Combust. Inst., 34, 2013, pp. 1393–1400.
  63. A. W. Skiba, T. M. Wabel, C. D. Carter, S. D. Hammack, J. E. Temme, and J. F. Driscoll, “Premixed flames subjected to extreme levels of turbulence part I: Flame structure and a new measured regime diagram,” Combust. Flame, 189, 2018, pp. 407–432.
  64. A. M. Steinberg, P. E. Hamlington, and X. Zhao, “Structure and dynamics of highly turbulent premixed combustion,” Prog. Energy Combust. Sci., 85, 2021, p. 100900.
  65. H. Pitsch, H. Barths, and N. Peters, “Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach,” SAE International Fall Fuels and Lubricants Meeting and Exhibition, Warrendale, PA, USA, Oct. 1996.
  66. M. Ihme and H. Pitsch, “Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model,” Combust. Flame, 155, 2008, pp. 70–89.
  67. P. Domingo, L. Vervisch, and D. Veynante, “Large-eddy simulation of a lifted methane jet flame in a vitiated coflow,” Combust. Flame, 152, 2008, pp. 415–432.
  68. Y. Minamoto and N. Swaminathan, “Subgrid scale modelling for MILD combustion,” Proc. Combust. Inst., 35, 2015, pp. 3529–3536.
  69. J. Kariuki, J. R. Dawson, and E. Mastorakos, “Measurements in turbulent premixed bluff body flames close to blow-off,” Combust. Flame, 159, 2012, pp. 2589–2607.
  70. J. Smagorinsky, “General circulation experiments with the primitive equations,” Mon. Weather Rev., 91, 1963, pp. 99–164.

71.T. Ma, Y. Gao, A. M. Kempf, and N. Chakraborty, “Validation and implementation of algebraic LES modelling of scalar dissipation rate for reaction rate closure in turbulent premixed combustion,” Combust. Flame,  161, 2014, pp. 3134–3153.

72.M. Zhao and H. Zhang, “Large eddy simulation of non-reacting flow and mixing fields in a rotating detonation engine,” Fuel,  280, 2020, p. 118534.

  1. S. B. Pope, Turbulent Flows. Cambridge University Press, 2000.
  2. C. Y. Lee and S. Cant, “Assessment of LES Subgrid-scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow,” Flow Turbul. Combust., 98, 2017, pp. 155–176.