بررسی عددی هندسه محفظه احتراق و بکارگیری گاز سنتز در یک موتور اشتعال تراکمی واکنش کنترل شده سنگین کار غیر جاده ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی فناوریهای نوین- دانشگاه تخصصی فناوریهای نوین آمل

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه آیت الله بروجردی، بروجرد، ایران

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران

چکیده

این مطالعه عددی با استفاده از کد دینامیک سیالات محاسباتی CONVERGE انجام شده است و به ارزیابی اثرهای هم­ زمان و جداگانه زمان­بندی پاشش مستقیم دیزل (16 تا 6 درجه میل­لنگ قبل از نقطه مرگ بالا با گام   2 درجه)، هندسه محفظه احتراق (مقعری (حالت پایه)، استوانه­ ای و کم­ عمق عریض)، و به­ کارگیری گاز سنتز (20 و 40 درصد کل انرژی سوخت در هر چرخه) در یک موتور غیرجاده­ای کار سنگین اشتعال تراکمی واکنش کنترل­ شده پرداخته است. برای شبیه­ سازی فرایند احتراق، از الگوی SAGE در کنار یک سازوکار سنتیک شیمیایی دقیق متشکل­ از 72 گونه و 360 واکنش استفاده شده است. نتایج نشان داده است در شرایط پایه کارکردی (زمان­ بندی پاشش 10 درجه میل­لنگ قبل از نقطه مرگ بالا و استفاده از کاسه پیستون مقعری) افزایش نسبت انرژی گاز سنتز به دیزل تا 40% باعث افزایش اتلاف حرارتی تا 4/3 درصد و کاهش هم­ زمان آلاینده ­های اکسیدهای ازت تا 12%، ذرات دوده حدود 88%، و هیدروکربن­ های نسوخته به مقدار تقریبا 82% در مقایسه با حالت پایه احتراق دیزل خالص شده است. علاوه ­بر این، به­ کارگیری هندسه کم عمق عریض به همراه پاشش سوخت دیزل در 16 درجه میل­لنگ قبل از نقطه مرگ ­بالا در شرایط کارکردی احتراق دیزل-گاز سنتز 40% باعث افزایش انتقال حرارت اتلافی (%7)، احتراق ناقص (%2/5) و همچنین کاهش هم­زمان اکسیدهای ازت (%3)، ذرات دوده (%37)، هیدروکربن­های نسوخته (%62)، و بازده ناخالصی اندیکاتوری (%4/7) در مقایسه با حالت پایه کارکردی احتراق دیزل خالص می ­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Computational evaluation of the combustion chamber geometry and applying syngas in a heavy-duty off-road Reactivity Controlled Compression Ignition (RCCI) engine

نویسندگان [English]

  • bahram jafari 1
  • Mahdi Seddiq 2
  • Seyyed Mostafa Mirsalim 3
1 Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT
2 Department of Mechanical Engineering, Faculty of Engineering, Ayatollah Boroujerdi University, Borujerd, Iran
3 Department of Mechanical Engineering, Amirkabir University, Tehran, Iran
چکیده [English]

This numerical research conducted using CONVERGE Computational Fluid Dynamic (CFD) code and devoted to assessing the simultaneous and separate impacts of Diesel Direct Injection Timing (DDIT) (16 to 6 Crank Angle (CA) Before Top Dead Center (BTDC) with 2 CA steps), combustion chamber geometry (re-entrant (baseline), cylindrical, and wide-shallow chamber), and applying syngas (20 and 40% of total energy per cycle) in a heavy-duty off-road RCCI engine. In the case of combustion simulation, the SAGE combustion model was used coupled with a detailed chemical kinetic mechanism consist of 72 species and 360 reactions. Results showed that under baseline operating conditions (DDIT of 10 CA BTDC and using re-entrant piston bowl) increasing the syngas to diesel ratio up to 40% caused a 3.4% rise in heat transfer loss and simultaneous reduction in Nitrogen Oxides (NOx) about 12%, Particulate Matter (PM) up to 88%, and Hydro-Carbons (HCs) nearly 82% compared to Pure Diesel Combustion (PDC) conditions. Besides, utilizing the wide-shallow combustion chamber along with diesel injection at 16 CA BTDC at diesel- 40% syngas combustion operating conditions led to the increment of heat transfer loss (7%), combustion loss (2.5%), and also, simultaneous reduction of NOx (3%), PM (37%), HC (62%), and gross indicated efficiency (4.7%) compared to baseline PDC case.

کلیدواژه‌ها [English]

  • RCCI combustion
  • Syngas
  • Combustion chamber
  • Diesel injection timing
  • Emission
  • Gross indicated efficiency
  1. F. Jurić and et al., “Experimental and numerical investigation of injection timing and rail pressure impact on combustion characteristics of a diesel engine,” Energy Conversion and Management, 185, 2019, pp. 730–739.
  2. S. M. Shareef and D. K. Mohanty, “Experimental investigations of dairy scum biodiesel in a diesel engine with variable injection timing for performance, emission and combustion,” Fuel, 280, 118647, 2020, pp.1-15.
  3. Motionlab Marketing Ltd, “Diesel in Europe in 2017: annus horribilis-JATO,” JATO, https://www.jato.com/diesel-in-europe-in-2017-annus-horribilis, Accessed Jan. 12, 2021.
  4. L. Ning, Q. Duan, H. Kou and K. Zeng, “Parametric study on effects of methanol injection timing and methanol substitution percentage on combustion and emissions of methanol/diesel dual-fuel direct injection engine at full load,” Fuel, 279, 118424, 2020, pp.1-11.
  5. M. J. Noroozi, M. Seddiq and H. Habibi, “Numerical Study of the Effects of Injection Timing and Using Group-Hole Nozzle for Fuel Injection in a Compression Ignition Engine,” Fuel and Combustion, 12, No. 1, 2019, pp. 51–76. (in Persian)
  6. R. Mobasheri and M. Seddiq, “Applying the Homogeneity Factor to Evaluate the Effects of Pilot Injection Characteristics on Air-Fuel Mixing Quality and Engine Performance in a Turbo-Charged High Speed Direct Injection (HSDI) Diesel Engine,” Fuel and Combustion, 20, No. 2, 2017, pp. 53–71. (in Persian)
  7. S. L. Kokjohn, R. M. Hanson, D. A. Splitter and R. D. Reitz, “Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion,” International Journal of Engine Research, 12, No. 3, 2011, pp. 209–226.
  8. A. Yousefi, H. Guo and M. Birouk, “Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions,” Fuel, 235, 2019, pp. 838–846.
  9. A. Mohammadian, H. Chehrmonavari, A. Kakaee and A. Paykani, “Effect of injection strategies on a single-fuel RCCI combustion fueled with isobutanol/isobutanol + DTBP blends,” Fuel, 278, 2020, 118219, pp.1-13.
  10. J. S. Rosa, M. E. S. Martins, G. D. Telli, C. R. Altafini, P. R. Wander and L. A. O. Rocha, “Exploring the effects of diesel start of injection and water-in-ethanol concentration on a reactivity controlled compression ignition engine,” Fuel,  281, 2020,118751 pp.1-14.
  11. J. Benajes, J. V. Pastor, A. García and J. Monsalve-Serrano, “An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine,” Energy Conversion and Management, 103, 2015, pp. 1019–1030.
  12. V. Karthickeyan, “Effect of Combustion Chamber Bowl Geometry Modification on Engine Performance, Combustion and Emission characteristics of Biodiesel Fuelled Diesel Engine with its Energy and Exergy Analysis,” Energy, 176, 2019, pp. 830-852.
  13. B. Jafari, M. Seddiq and S. M. Mirsalim, “Assessment of the impacts of combustion chamber bowl geometry and injection timing on a reactivity controlled compression ignition engine at low and high load conditions,” International Journal of Engine Research, 146808742096121, 2020, pp. 1-17.
  14. R. Sener, M. U. Yangaz and M. Z. Gul, “Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine,” Fuel,  266, 2020, pp. 117-122.
  15. S. Khan, R. Panua and P. K. Bose, “The impact of combustion chamber configuration on combustion and emissions of a single cylinder diesel engine fuelled with soybean methyl ester blends with diesel,” Renewable Energy,  143, 2019, pp. 335–351.
  16. R. D. Reitz and G. Duraisamy, “Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines,” Progress in Energy and Combustion Science, 46, 2015, pp. 12–71.
  17. H. Wang, D. DelVescovo, M. Yao and R. D. Reitz, “Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver,” SAE International Journal of Engines,  8, No. 2, 2015, pp. 831–845.
  18. D. E. Nieman, A. B. Dempsey and R. D. Reitz, “Heavy-Duty RCCI Operation Using Natural Gas and Diesel,” SAE International Journal of Engines, 5, No. 2, 2012, pp. 270–285.
  19. Z. Xu and et al., “Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine,” Fuel, 234, 2018, pp. 120–134.
  20. F. D. F. Chuahy and S. L. Kokjohn, “Effects of reformed fuel composition in ‘single’ fuel reactivity controlled compression ignition combustion,” Applied Energy, 208, 2017, pp. 1–11.
  21. M. Krishnamoorthi, S. Sreedhara and P. Prakash Duvvuri, “Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends,” Applied Energy, 263,114643, 2020, pp.1-24.
  22. M. Yari, N. Kousheshi and A. Saberimehr, “Effect of the composition of syngas derived from biomass gasification on performance and emission characteristic of a diesel-syngas RCCI engine,” Fuel and Combustion, 12, No. 4, 2019, pp. 77–95. (in Persian)
  23. K. J. Richards, P. K. Senecal and E. Pomraning, “CONVERGE (v2.3),” Convergent Science, Inc., Madison, WI, 2016.
  24. K. J. Richards, P. K. Senecal and E. Pomraning, “CONVERGE v2.3 Manual,” Convergent Science, Inc., Madison, WI, 2016.
  25. P. K. Senecal and et al., “Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry,” SAE Technical Paper 2003-01-1043, 2003.
  26. H. Wang, Y. Ra, M. Jia and R. D. Reitz, “Development of a reduced n-dodecane-PAH mechanism and its application for n-dodecane soot predictions,” Fuel, 136, 2014, pp. 25–36.
  27. A. Babajimopoulos, D. N. Assanis, D. L. Flowers, S. M. Aceves and R. P. Hessel, “A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines,” International Journal of Engine Research,  6, No. 5, 2005, pp. 497–512.
  28. R. D. Reitz and F. V. Bracco, “Mechanisms of Breakup of Round Liquid Jets,” The Encyclopedia of Fluid Mechanics, Gulf, Houston: Gulf Publishing Company, 3, 1986, pp. 223-249.
  29. S. P. Lin and Z. W. Lian, “Mechanisms of the breakup of liquid jets,” AIAA Journal, 28, No. 1, 1990, pp. 120–126.
  30. D. P. Schmidt and C. J. Rutland, “A New Droplet Collision Algorithm,” Journal of Computational Physics, 164, No. 1, 2000, pp. 62–80.
  31. A. A. Amsden, P. J. O’Rourke and T. D. Butler, KIVA- II: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Laboratory Technical Report LA-11560-MS, 1989.
  32. J. Naber and R. D. Reitz, “Modeling Engine Spray/Wall Impingement,” SAE Technical Paper 880107, 1988.
  33. Z. Han and R. D. Reitz, “A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling,” International Journal of Heat and Mass Transfer,  40, No. 3, 1997, pp. 613–625.
  34. V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski and C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids A: Fluid Dynamics,  4, No. 7, 1992, pp. 1510–1520.
  35. F. D.F. Chuahy and S. L. Kokjohn, “High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming,” Applied Energy, 195, 2017, pp. 503–522.
  36. A. H. Kakaee, A. Nasiri-Toosi, B. Partovi and A. Paykani, “Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine,” Applied Thermal Engineering, 102, 2016, pp. 1462–1472.
  37. D. Tenenbaum, “Best-ever efficiency points to clean, green gas-diesel engine,” news.wisc.edu, Jul. 15, 2014. https://news.wisc.edu/best-ever-efficiency-points-to-clean-green-gas-diesel-engine/, Accessed Dec. 24, 2020.
  38. L. Wei, C. Yao, G. Han and W. Pan, “Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine,” Energy,  95, 2016, pp. 223–232.
  39. C. P. Abdul Gafoor and R. Gupta, “Numerical investigation of piston bowl geometry and swirl ratio on emission from diesel engines,” Energy Conversion and Management, 101, 2015, pp. 541–551.