بهینه سازی فرآیند تولید بیودیزل از روغن کلزای غیرخوراکی با استفاده از روش سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس

چکیده

در طول سال­ های اخیر، با توجه به شرایط آب وهوایی مطلوب ایران، کشت کلزا به میزان قابل توجهی افزایش یافت، به­ طوری که در سال 2010 تولید کلزا در ایران به 145900 تن در سال بود که در سال 2013 به 174999 تن در سال رسید. هدف از این تحقیق بررسی امکان تولید بیودیزل از روغن کلزای غیرخوراکی با استفاده از سامانه فراصوت است. در این تحقیق، چهار فاکتور مختلف، ازجمله نسبت مولی، زمان واکنش، پالس و دامنه، در سه سطح درنظر گرفته شد. برای تجزیه و تحلیل آماری از نرم ­افزار Designe Exeprt، روش سطح پاسخ (RSM) و طرح  Box Behnken  برای شناسایی شرایط مطلوب روند استفاده شد. پس از تجزیه و تحلیل داده­ ها و بهینه­ سازی واکنش تولید بیودیزل نتیجه تحقیق نشان داد که در شرایط بهینه تولید بیودیزل در نسبت مولی 87/1:4، زمان واکنش77/3 دقیقه، پالس 58/99 درصد و دامنه 5/73 درصد، بازده واکنش 26/89 درصد به دست آمد. خواص فیزیکی و شیمیایی بیودیزل تولیدشده با استاندارد EN 14112 مطابقت دارد و نشان­دهنده این است که بیودیزل تولیدشده دارای عملکرد قابل قبولی است و می­ توان به­ عنوان سوخت جایگزین در موتور دیزل استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimasiton of biodiesel production process from Non-edible rapseed using response surface method (RSM)

نویسندگان [English]

  • Sara Almasi 1
  • Gholamhassan Najafi 1
  • برات قبادیان 2
1 Biosystems engineering Department, TarbiatModares University, Tehran, Iran
2 استاد، مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس
چکیده [English]

In recent years, due to the favorable climate conditions of Iran, rapeseed cultivation has increased significantly. Iran's canola production was 145,900 tons per year in 2010, which reached 174,999 tons per year in 2013. The purpose of this study was to investigate the possibility of biodiesel production from non-edible rapeseed oil using ultrasonic device. In this research, four different factors such as molar ratio, reaction time, pulse and amplitude were considered at three levels. Statistical analysis using Designe Exeprt software, response surface method (RSM) and Box Behnken layout was used to identify the optimal conditions of the process. After analyzing the data and optimizing the biodiesel production process, the biodiesel yield was 89.26% under the optimized conditions, i.e., a methanol-to-oil molar ratio of 4.87:1, pulse of 0.99 s, amplitude 73.5%, and a reaction time of 3.77 min. The biodiesel prepared from None-edible rapeseed oil complies with the criteria dictated by EN 14112 standards. So, the produced biodiesel from none-edible rapeseed can be used as an alternative fuel for a diesel engine.

کلیدواژه‌ها [English]

  • Biodiesel
  • Transestrificasion
  • RSM
  • None-edible rapseed oil
  • Ultrasonic
 
1.   M. V. Twigg, “Progress and future challenges in controlling automotive exhaust gas emissions,” Applied Catalysis B: Environmental, 70, No. 1-4, 2007, pp. 2-15.
2.   J. Wang, “Hybrid robust air-path control for diesel engines operating conventional and low temperature combustion modes,IEEE Transactions on Control Systems Technology, 16, No. 6, 2008, pp. 1138-1151.
3.   V. Ş. Ediger, and E. Kentel, “Renewable energy potential as an alternative to fossil fuels in Turkey,” Energy Conversion and Management, 40, No. 7, 1999,  pp. 743-755.
4.   F. Barbir, T. Veziroǧlu, and H. Plass Jr, “Environmental damage due to fossil fuels use,” International Journal of Hydrogen Energy, 15, No. 10, 1990, pp. 739-749.
5.   C. Carraretto, et al., “Biodiesel as alternative fuel: experimental analysis and energetic evaluations,” Energy, 29, No. 12-15, 2004, pp. 2195-2211.
6.   D. Huang, H. Zhou, and L. Lin, “Biodiesel: an alternative to conventional fuel,” Energy Procedia, 16, 2012, pp. 1874-1885.
7.   N. Gaurav, et al., “Utilization of bioresources for sustainable biofuels: A Review,” Renewable and Sustainable Energy Reviews, 73, 2017, pp. 205-214.
8.   A. Datta, and B. K. Mandal, “A comprehensive review of biodiesel as an alternative fuel for compression ignition engine,” Renewable and Sustainable Energy Reviews, 57, 2016, pp. 799-821.
9.   S. Hoseini, et al., “The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends,” Renewable and Sustainable Energy Reviews, 73, 2017, pp. 307-331.
10. A. Atabani, et al., “Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production,” Renewable And Sustainable Energy Reviews, 18, 2013, pp. 211-245.
11. S. Singh, and D. Singh, “Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review,” Renewable and Sustainable Energy Reviews, 14, No. 1, 2010, pp. 200-216.
12. B. H. Samani, et al., Ultrasonic-assisted production of biodiesel from Pistacia atlantica Desf. oil,Fuel, 168, 2016, pp. 22-26.
13. B. Mostafaei, et al., “Optimization of ultrasonic reactor geometry for biodiesel production using response surface methodology,” Journal of Agricultural Science and Technology, 15, No. 4, 2013, pp. 697-708.
14. M. Sabzimaleki, et al., “Optimization of biodiesel ultrasound-assisted synthesis from castor oil using response surface methodology (rsm),” Chemical Product and Process Modeling, 10, No. 2, 2015, p. 123-133.
15. S. K. Bhangu, S. Gupta, and M. Ashokkumar, “Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis,” Ultrasonics Sonochemistry, 34, 2017, pp. 305-309.
16. S. V. Mazanov, et al., “Continuous production of biodiesel from rapeseed oil by ultrasonic assist transesterification in supercritical ethanol,” The Journal of Supercritical Fluids, 118, 2016, pp. 107-118.
17. H. D. Hanh, et al., “Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field,” Renewable Energy, 34, No. 3, 2009, pp. 766-768.
18. P. Maneechakr, et al., “Experimental design and kinetic study of ultrasonic assisted transesterification of waste cooking oil over sulfonated carbon catalyst derived from cyclodextrin,” Journal of Industrial and Engineering Chemistry, 32, 2015, pp. 128-136.
19. L. S. Teixeira, et al., “Comparison between conventional and ultrasonic preparation of beef tallow biodiesel,” Fuel Processing Technology, 90, No. 9, 2009, pp. 1164-1166.
20. D. Kumar, G. Kumar, and C. Singh, “Fast,easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication,” Ultrasonics Sonochemistry, 17, No. 3, 2010, pp. 555-559.
21. M. Maghami, S. Sadrameli, and B. Ghobadian, “Production of biodiesel from fishmeal plant waste oil using ultrasonic and conventional methods,” Applied Thermal Engineering, 75, 2015, pp. 575-579.
22. M. Mostafaei, et al., “Optimization of ultrasonic assisted continuous production of biodiesel using response surface methodology,” Ultrasonics Sonochemistry, 27, 2015, pp. 54-61.
23. A. Praptijanto, et al., “Sonochemistry approach to reducing biodiesel reaction time from Jatropha Curcas oil by clamp on tubular reactor,” Energy Procedia, 68, 2015, pp. 480-489.
24. I. Korkut, and M. Bayramoglu, “Selection of catalyst and reaction conditions for ultrasound assisted biodiesel production from canola oil,” Renewable Energy, 116, 2018, pp. 543-551.
25. N. Boz, N. Degirmenbasi, and D. M. Kalyon, “Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds,” Applied Catalysis B: Environmental, 138-139, 2013, pp. 236-242.
26. Z. Hosseini, Conventional Methods in Food Analysis, PhD Thesis, School of Agriculture, Shiraz university, Shiraz, Iran, 2008. (In Persian)
27. A. Demirbas, “Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics,” Energy conversion and Management, 47, No. 15-16, 2006.  pp. 2271-2282.
28. L. Metcalfe, A. Schmitz, and J. Pelka, “Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis,” Analytical Chemistry, 38, No. 3, 1966, pp. 514-515.
29. K. Noipin, and S. Kumar, “Optimization of ethyl ester production assisted by ultrasonic irradiation,” Ultrasonics Sonochemistry, 22, 2015, pp. 548-558.
30. E. J. Paiva, et al., “Non-edible babassu oil as a new source for energy production-a feasibility transesterification survey assisted by ultrasound,” Ultrasonics Sonochemistry, 20, No. 3, 2013, pp. 833-838.
31. E. Fayyazi, et al., “An ultrasound-assisted system for the optimization of biodiesel production from chicken fat oil using a genetic algorithm and response surface methodology,” Ultrasonics Sonochemistry, 26, 2015, pp. 312-320.
32. G. Kumar, et al., “Enzymatic transesterification of Jatropha curcas oil assisted by ultrasonication,” Ultrasonics Sonochemistry, 18, No. 5, 2011, pp. 923-927.