پیش بینی و بهینه سازی برخی ویژگی های بیودیزل پالم با استفاده از خواص دی الکتریک به روش سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس، تهران، ایران

2 /گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس.

3 مهندسی برق، مرکز تحقیقات مخابرات ایران، تهران

چکیده

استفاده از سامانه‌ پایش کیفی بیودیزل تولیدی (به­صورت برخط و ناپیوسته) همواره نیاز اساسی تولید این فرآورده است که نیازمند تحقیقاتی در این زمینه است. هدف از این تحقیق پیش­بینی و بهینه­ سازی ویژگی­های بیودیزل پالم با استفاده از خواص دی­الکتریک آن است. متغیرهای خواص دی­الکتریک بیودیزل (έ، ثابت دی­الکتریک و ″ε، فاکتور اتلاف) در فرکانس­ های مایکروویو (434، 915 و MHz 2450) به­ عنوان متغیرهای ورودی مورد استفاده قرار گرفت. ویژگی­های بیودیزل پالم، محتوای متیل استر اسیدهای چرب و نقطه اشتعال در سه سطح مختلف زمان واکنش (7، 21 و 63 دقیقه) و غلظت کاتالیزور (1، 5/1 و %w/woil2)  به­ عنوان متغیرهای خروجی­ مدل درنظر گرفته شد. روش سطح پاسخ برای پیش­بینی و بهینه­سازی محتوای متیل استر و نقطه اشتعال مورد ارزیابی قرار گرفت. شرایط بهینه با استفاده از سطح پاسخ برای محتوای متیل استر به میزان 87/9۱ درصد و نقطه اشتعال به میزان C° 7/162 با مطلوبیت 999/0 به­دست آمد. همچنین، با استفاده از این روش معادله­ درجه دو برای پیش­بینی محتوای متیل استر و نقطه اشتعال به­ دست آمد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction and Optimization of Palm Biodiesel Characteristics Using Permittivity Properties and Response Surface Methodology

نویسندگان [English]

  • Mohammad Zarein 1
  • Mohammad Hadi Khoshtaghaza 2
  • برات قبادیان 1
  • Hossein Ameri Mahabadi 3
1 Mechanical & Biosystems Engineering Dept., Tarbiat Modares University, Tehran, Iran
2 Biosystem Engineering Dept., College of Agriculture, Tarbiat Modares University
3 Electrical Engineering Department, Iran Telecommunication Research Center (ITRC), Tehran, Iran.
چکیده [English]

The usage of biodiesel quality monitoring system (online and batch) is always the basic requirement of its production which requires to research in this area. The purpose of this study is to predict and optimize the palm biodiesel characteristics using its permittivity properties. The parameters of biodiesel permittivity properties (ε’, dielectric constant and ε″, loss factor) at microwave frequencies of (434, 915 and 2450 MHz) were used as input variables. The palm biodiesel characteristics as fatty acid methyl ester (FAME) content and flash point (FP) at three different level of reaction time (3, 9 and 27 min) and catalyst concentration (1, 1.5 and 2 % w/woil) were selected as output parameters for the models. The response surface methodology was developed for prediction and optimization of FAME content and flash point. The optimum condition was obtained using RSM by FAME content of 95.87% and flash point of 162.7 °C with desirability of 0.999.

کلیدواژه‌ها [English]

  • FAME Content
  • Flash Point
  • Dielectric constant
  • Loss factor
  • Optimum conditions
  1. B. Ghobadian, “Developmental Trends of Sustainable Bioenergy Systems at TMU Laboratories,” Journal of Sustainable Bioenergy Systems, 2, 2012, pp. 11-18.
  2. J. V. Gerpen, “Biodiesel Processing and Production,” Fuel Processing Technology, 86, 2005, pp. 1097-1107.
  3. H. Fukuda, A. Kondo, and H. Noda, “Biodiesel Fuel Production by Transesterification of Oils,” Journal of Bioscience and Bioengineering, 92, 2001, pp. 405-416.
  4. J. M. Marchetti, V. U. Miguel and A. F. Errazu, “Possible Methods for Biodiesel Production,” Renewable and Sustainable Energy Reviews, 11, 2007, pp. 1300-1311.
  5. P. Chand, V. R. Chintareddy, J. G. Verkade and D. Grewell, “Enhancing Biodiesel Production from Soybean Oil using Ultrasonics,” Energy & Fuels, 24, 2010, pp. 2010-2015.
  6. L. Zou and S. Atkinson, “Characterising Vehicle Emissions from the Burning of Biodiesel Made from Vegetable Oil,” Environmental Technology, 24, 2003, pp. 1253-1260.
  7. W. M. J. Achten, L. Verchot, Y. J. Franken, E. Mathijs, V. P. Singh, R. Aerts and B. Muys, “Jatropha Bio-Diesel Production and use,” Biomass and Bioenergy, 32, 2008, pp. 1063-1084.
  8. M. Balat and H. Balat, “A Critical Review of Bio-Diesel as a Vehicular Fuel,” Energy Conversion and Management, 49, 2008, pp. 2727-2741.
  9. A. Demirbas, “Biodiesel from Sunflower Oil in Supercritical Methanol with Calcium Oxide,” Energy Conversion and Management, 48, 2007, pp. 937-941.
  10. G. Najafi, B. Ghobadian and T.F. Yusaf, “Algae as a Sustainable Energy Source for Biofuel Production in Iran: A Case Study,” Renewable and Sustainable Energy Reviews, 15, 2011, pp. 3870-3876.
  11. S. Dmytryshyn, A. Dalai, S. Chaudhari, H. Mishra and M. Reaney, “Synthesis and Characterization of Vegetable Oil Derived Esters: Evaluation for Their Diesel Additive Properties,” Bioresource Technology, 92, 2004, pp. 55-64.
  12. L. C. Meher, D. Vidya Sagar and S. N. Naik, “Technical Aspects of Biodiesel Production by Transesterification-A Review,” Renewable and Sustainable Energy Reviews, 10, 2006, pp. 248-268.
  13. J. E. De Souza, M. D. Scherer, J. A. S. Cáceres, A. R. L. Caires, and J. C. M’Peko, “A Close Dielectric Spectroscopic Analysis of Diesel/Biodiesel Blends and Potential Dielectric Approaches for Biodiesel Content Assessment,” Fuel, 105, 2013, pp. 705-710.
  14. H. Bakhoda, M. Almassi, N. Moharamnejad, R. Moghaddasi and M. Azkia, “Energy Production Trend in Iran and its Effect on Sustainable Development,” Renewable and Sustainable Energy Reviews, 16, 2011, pp. 1335-1339.
  15. R.M. Balabin, E.I. Lomakinaand and R.Z. Safieva, “Artificial Neural Network (ANN) Approach to Biodiesel Analysis: Analysis of Biodiesel Density, Kinematic Viscosity, Methanol and Water Contents using Near Infrared (NIR) Spectroscopy,” Fuel, 90, 2011, pp. 2007-2015.
  16. A. E. Ghanei, R. Moradi, G. R. Taherpour and R. Kalantari, “Variation of Physical Properties During Transesterification of Sunflower Oil to Biodiesel as an Approach to Predict Reaction Progress,” Fuel Processing Technology, 92, 2011, pp. 1593-1598.
  17. W. S. Jie, H. Abdullah, N. Yusof and Z. Abbas, “Dielectric Properties of Oil Palm Trunk Core,” Journal of Clean Energy Technologies, 3, 2015, pp. 422-427.
  18. I. E. Elbatawi, “An Acoustic Impact Method to Detect Hollow Heart of Potato Tubers,” Biosystem Engineering, 100, 2008, pp. 206-213.
  19. J. Cheeke and N. Davis, Fundamentals and Applications of Ultrasonic Waves, Second Edition, Florida, CRC Press, 2002.
  20. M. S. Venkatesh and G. S. V. Raghavan, “An Overview of Dielectric Properties Measuring Techniques,” Canadian Biosystem Engineering, 47, 2005, pp. 15-30.
  21. D. P. Muley and D. Boldor, “Investigation of Microwave Dielectric Properties of Biodiesel Components,” Bioresource Technology, 127, 2013, pp. 165-174.
  22. A. Biswas, A. Adhvaryu, D. G. Stevenson, B.K. Sharma, J. L. Willet and S. Z. Erhan, “Microwave Irradiation Effects on the Structure, Viscosity, Thermal Properties and Lubricity of Soybean oil,” Industrial Crops and Products, 25, 2007, pp. 1-7.
  23. R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization using Designed Experiments, New York, John Wiley & Sons, 1995.
  24. V. B. Veljkovic, J. M Avramovic and O. S. Stamenkovic, “Biodiesel Production by Ultrasound-Assisted Transesterification:  State of the Art and the Perspectives,” Renewable and Sustainable Energy Reviews, 16, 2012, pp. 1193-1209.
  25. M. Maghami, S. M. Sadrameli and B. Ghobadian, “Production of Biodiesel from Fishmeal Plant Waste Oil using Ultrasonic and Conventional Methods,” Applied Thermal Engineering, 75, 2015, pp. 575-579.
  26. D. M. Pozar, Microwave Engineering, Fourth Edition, Wiley, Massachusetts, 2005.
  27. D. Başand, I. H. Boyacı, “Modeling and Optimization I: Usability of Response Surface Methodology,” Journal of Food Engineering, 78, 2007, pp. 836-845.
  28. M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar andL. A. Escaleira, “Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry,” Talanta, 76, 2008, pp. 965-977.
  29. S. Ghafari, H. AbdulAziz, M. H. Isa and A. A. Zinatizadeh,”Application of Response Surface Methodology (RSM) to Optimize Coagulation-Flocculation Treatment of Leachate using Poly-Aluminum Chloride (PAC) and Alum,” Journal of Hazardous Materials, 163, 2009, pp. 650-656.
  30. G. Chen, R. Shan, J. Shi and B. Yan, “Ultrasonic-Assisted Production of Biodiesel from Transesterification of Palm Oil Over Ostrich Eggshell-Derived CaO Catalysts,” Bioresource Technology, 171, 2014, pp. 428-432.
  31. J. Mejía, N. Salgado and C. Orrego, “Effect of Blends of Diesel and Palm-Castor Biodiesels on Viscosity, Cloud Point and Flash Point,” Industrial Crops and Products, 43, 2013, pp. 791-797.
  32. M. Ijaz, K. H. Bahtti, Z. Anwar, U. F. Dogar and M. Irshad, “Production, Optimization and Quality Assessment of Biodiesel from Ricinus Communis L. Oil,” Journal of Radiation Research and Applied Sciences, 9, 2016, pp. 180-184.
  33. A. Joshi, S. Pund, M. Nivsarkar, K. Vasu and C. Shishoo, “Dissolution Test for Site-Specific Release Ionized Pellets in USP Apparatus 3 (Reciprocating Cylinder): Optimization using Response Surface Methodology,” European Journal of Pharmaceutics and Biopharmaceutics, 69, 2008, pp. 769-775.
  34. S. D. Romanoand P. A. Sorichetti, Dielectric Spectroscopy in Biodiesel Production and Characterization, Springer-Verlag London, London, 2011.
  35. P. A. Sorichetti and S. D. Romano, “Physico-Chemical and Electrical Properties for the Production and Characterization of Biodiesel,” Physics and Chemistry of Liquids, 43, 2005, pp. 37-48.