تخمین میزان آلاینده‌های NOx در یک محفظه احتراق توربین گاز صنعتی با روش شبیه‌سازی گردابه‌های بزرگ و مدل‌سازی شبکه رآکتور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدیر واحد تست و عملکرد، دپارتمان محفظه، شرکت توربوکمپرسور تک خاورمیانه (توربوتک)، شهرک صنعتی شمس آباد، تهران، ایران

2 کارشناس واحد تست و عملکرد، دپارتمان محفظه، شرکت توربوکمپرسور تک خاورمیانه (توربوتک)، شهرک صنعتی شمس آباد، تهران، ایران

3 کارشناس واحد شبیه‌سازی، دپارتمان محفظه، شرکت توربوکمپرسور تک خاورمیانه (توربوتک)، شهرک صنعتی شمس آباد، تهران، ایران

4 کارشناس واحد تست و عملکرد، دپارتمان محفظه، شرکت توربوکمپرسور تک خاورمیانه (توربوتک)، شهرک صنعتی شمس آباد، تهران، ایران دانشجوی دکترای مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران

چکیده

مطالعه حاضر به تخمین آلاینده‌های NOx در محفظه احتراق یک موتور توربین گاز صنعتی با استفاده از رویکرد مدل‌سازی شبکه رآکتور می‌پردازد. تولید شبکه رآکتور بر مبنای توزیع زمانی- مکانی کسر مخلوط در بالادست جبهه شعله و زمان اقامت جریان در حجم شعله انجام گردیده است. بدین منظور، شبیه‌سازی گردابه‌های بزرگ برای ارزیابی توزیع کسر مخلوط در بالادست جبهه شعله مورد استفاده قرار گرفته و زمان اقامت با استفاده از مدل‌سازی RANS محاسبه شده است. علاوه بر این، موقعیت جبهه شعله و حجم شعله با استفاده از شبیه‌سازی RANS و نیز با استفاده از نرم‌افزار ENERGICO تعیین گردیده است. نتایج محاسبات با استفاده از اطلاعات تجربی موتور صحه‌گذاری شده و دقت بالای رویکرد پیشنهادی در تخمین میزان آلاینده‌های NOx در محفظه مورد مطالعه را تایید کرده است. مطالعات پارامتریک مختلفی برای ارزیابی آثار ترکیب سوخت، سینتیک شیمیایی، موقعیت شعله، و رژیم احتراقی بر مسیرهای تولید NOx نیز انجام شده است. نتایج مطالعات نشان داده است که موقعیت شعله و ترکیب سوخت بیشترین تاثیر را بر میزان تولید NOx دارند. با استفاده از این رویکرد، محفظه مورد بحث از نظر آلاینده‌های NOx ارتقا یافته و این آلاینده از سطح ppmvd 25 به ppmvd 15 کاهش داده شده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of NOx Emissions in an Industrial Gas Turbine Combustor Using Large Eddy Simulation and Reactor Network Modeling

نویسندگان [English]

  • Mohammad Ali Soroudi 1
  • Sara Montazerinejad 2
  • Ehsan Mollahassanzadeh 3
  • Sajjad Rezayat 4
  • Mohammad Shahsavari 2
1 Manager of Combustor Test and Operation Group, Turbotec Co.
2 Senior Engineer in Combustor Test and Operation Group, Turbotec Co.
3 Senior Engineer in Combustor Simulation Group, Turbotec Co.
4 Senior Engineer in Combustor Test and Operation Group, Turbotec Co.
چکیده [English]

The present investigation concerns prediction of NOx emissions in a stationary gas turbine combustor using reactor network modeling approach. Here, the reactor network is constructed based on spatiotemporal distribution of mixture fraction upstream of the flame front and flow residence time in the flame volume. To such aim, large eddy simulation is carried out to evaluate mixture fraction distribution upstream of the flame front, while the residence time is calculated by using RANS simulations. Moreover, the flame front position and flame volume is discerned using both RANS simulations and ENERGICO software. Obtained results are validated against experimental data. Such validations show that present method can accurately predict NOx emissions in the dry low emissions combustor. In an attempt to enrich the present investigation, parametric studies are carried out to evaluate effects of fuel composition, chemical kinetics, flame location, and combustion regime on the NOx production paths. Obtained results reveal that flame position and fuel composition have the most considerable effects on the NOx emissions among the investigated parameters. Based on above investigations, the present combustor is modified to reduce the NOx emissions from 25 ppmvd to 15 ppmvd.

کلیدواژه‌ها [English]

  • Gas turbine
  • NOx emissions
  • Reactor network
  • Modeling
  • Combustor upgrading
  1.  

    1. A. H. Epstein, “Aircraft engines' needs from combustion science and engineering,” Combustion and Flame, 159, 2012, pp. 1791-1792.
    2. T. C. Lieuwen, M. Chang and A. Amato, “Stationary gas turbine combustion: Technology needs and policy considerations,” Combustion and Flame, 160, 2013, pp. 1311-1314.
    3. T. C.  Lieuwen and V. Yang, Gas Turbine Emissions, Cambridge University Press, Cambridge, UK, 2013. 
    4. P. Jansohn, Modern Gas Turbine Systems: High Efficiency, Low Emission, Fuel Flexible Power Generation, Woodhead Publishing Limited, Cambridge, UK, 2013.
    5. J. Park, T. H. Nguyen, D. Joung, K. Y. Huh and M. C. Lee, “Prediction of NOx and CO emissions from an industrial lean-premixed gas turbine combustor using a chemical reactor network model,” Energy & Fuels, 27, 2013, pp. 1643-1651.
    6. S. M. Correa, “Power generation and aeropropulsion gas turbines: From combustion science to combustion technology,” Proceedings of the Combustion Institute, 27, 1998, pp. 1793-1807.
    7. G. J. Sturgess, J. Zelina, D. T. Shouse and W. M. Roquemore, “Emissions reduction technologies for military gas turbine engines,” Journal of Propulsion and Power, 21, 2005, pp. 193-217.
    8. L. L. Thomas, D. W. Simons, P. Popovic, C. E. Romoser, D. D. Vandale and J. V. Citeno, “E-class DLN technology advancements, DLN1+,” ASME Paper GT2011-45944, 2011.
    9. https://powergen.gepower.com/products.html, Accessed on July 2017.
    10. http://www.mhps.com/en/products/thermal_power_plant/gas_turbin/index.html, Accessed on July 2017.
    11. K. Venkataraman, S. E. Lewis, J. Natarajan, S. R. Thomas and J. V. Citeno, “F-class DLN technology advancements: DLN2.6+,” ASME Paper GT2011-45373, 2011.
    12. M. Shahsavari, M. A. Soroudi, M. Yazdani, S. Montazerinejad and Y. Bagheri, “CO pollutant prediction of a stationary gas turbine combustor using finite rate eddy dissipation combustion model,” Journal of Fuel and Combustion, Official Journal of the Iranian Section of the Combustion Institute, 10, 2018, pp. 33-49. (in Persian)
    13. K. J. Syed, K. Roden and P. Martin, “A novel approach to predicting NOx emissions from dry low emissions gas turbines,” Journal of Engineering for Gas Turbines and Power,” 129, 2007, pp. 672-479.
    14. F. Biagioli and F. Guthe, “Effect of pressure and fuel-air unmixedness on NOx emissions from industrial gas turbine burners,” Combustion and Flame, 151, 2007, pp. 274-288.
    15. F. Biagioli, A. De Pascale and F. Guthe, “Modelling NOx emissions from lean partially premixed flames in industrial burners,” Proceedings of the European Combustion Meeting, Louvain-la-Neuve, Belgium, April 2005.
    16. G. Leonard and J. Stegmaier, “Development of an aeroderivative gas turbine dry low emissions combustion system,” Jouranl of Engineering for Turbines and Power, 116, 1994, pp. 102-107.
    17. R. K. Cheng, D. Littlejohn, P. A. Strakey and T. Sidwell, “Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions,” Proceedings of the Combustion Institute, 32, 2009, pp. 3001-3009.
    18. A. M. Elkady, J. Herbon, D. M. Kalitan, G. Leonard, R. Akula, H. Karim, and M. Hadley, “Gas Turbine Emission Characteristics in Perfectly Premixed Combustion,” Journal of Engineering for Gas Turbines and Power, 134, 2012, p. 061501.
    19. A. S. AlAdawy, J. G. Lee and B. Abdelnabi, “Effect of turbulence on NOx emission in a lean perfectly-premixed combustor,” Fuel, 208, 2017, pp. 160-167.
    20. S. Dederichs, N. Zarzalis, P. Habisreuther, C. Beck, B. Prad and W. Krebs, “Assessment of a gas turbine NOx reduction potemtial based on a spatiotemporal unmixedness parameter,” Journal of Engineering for Gas Turbines and Power, 135, 2013, p. 111504.
    21. M. A. Soroudi, Using simplified chemical kinetics in natural-gas combustion modeling, M.Sc. Thesis, Faculty of Aerospace Engineering, Sharif University of Technology, Tehran, Iran, 2004. (In Persian) 
    22. K. Ehrhardt, P. Toqan, P. Jansohn, J. D. Teare, J. M. Beer, G. Sybon and W. Leuckel, "Modeling of NOx reburning in a pilot scale furnace using detailed reaction kinetics," Combustion Science and Technology, 131, 1998, pp. 131-146.
    23. M. Falcitelli, S. Pasini, N. Rossi and L. Tognotti, “CFD+reactor network analysis: an integrated methodology for the modeling and optimisation of industrial systems for energy saving and pollution reduction,” Applied Thermal Engineering, 22, 2002, pp. 971-979.
    24. V. Fichet, M. Kanniche, P. Plion and O. Gicquel, “A reactor network model for predicting NOx emissions in gas turbines,” Fuel, 89, 2010, pp. 2202-2210.
    25. R. F. D. Monaghan, R. Tahir, A. Cuoci, G. Bourque, M. Furi, R. L. Gordon, T. Faravelli, A. Frassoldati and H. J. Curran, “Detailed multi-dimensional study of pollutant formation in a methane diffusion flame,” Energy & Fuels, 26, 2012, pp. 1598-1611.
    26. Y. Kang, Q. Wang, X. Lu, H. Wan, X. Ji, H. Wang, Q. Guo, J. Yan, and J. Zhou, “Experimental and numerical study on NOx and CO emission characteristics of dimethyl ether/air jet diffusion flame,” Applied Energy, 149, 2015, pp. 204-224.
    27. Y. Kang, S. Wei, P. Zhang, X. Lu, Q. Wang, X. Gou, X. Huang, S. Peng, D. Yang and X. Ji, “Detailed multi-dimensional study on NOx formation and destruction mechanisms in dimethyl ether/air diffusion flame under the moderate or intense low-oxygen dilution (MILD) condition,” Energy, 119, 2017, pp. 1195-1211.
    28. S. Goke, S. Schimek, S. Terhaar, T. Reichel, K. Gockeler, O. Kruger, J. Fleck, P. Griebel and C. O. Paschereit, “Influence of pressure and steam dilution on NOx and CO emissions in a premixed natural gas flame,” Journal of Engineering for Gas Turbines and Power, 136, 2014, p. 091508.
    29. A. Frassoldati, S. Frigerio, E. Colombo, F. Inzoli, and T. Faravelli, “Determination of NOx emissions from strong swirling confined flames with an integrated CFD-based procedure,” Chemical Engineering Science, 60, 2005, pp. 2851-2869.
    30. R. F. D. Monaghan, R. Tahir, G. Bourque, R. L. Gordon, A. Cuoci, T. Faravelli, A. Frassoldati and H. J. Curran, “Detailed emissions prediction for a turbulent swirling nonpremixed flame,” Energy & Fuels, 28, 2014, pp. 1470-1488.
    31. M. Falcitelli, L. Tognotti and S. Pasini, “An algorithm for extracting chemical reactor network models from CFD simulation of industrial combustion systems,” Combustion Science and Technology, 174, 2002, pp. 27-42.
    32. M. Falcitelli, S. Pasini and L. Tognotti, “Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach,” Computers & Chemical Engineering, 26, 2002, pp. 1171-1183.
    33. D. Benedetto, S. Pasini, M. Falcitelli, C. La Marca and L. Tognotti, “NOx emission prediction from 3-D complete modelling to reactor network analysis,” Combustion Science and Technology, 153, 2000, pp. 279-294.
    34. T. Faravelli, L. Bua, A. Frassoldati, A. Antifora, L. Tognotti and E. Ranzi Zhou, “A new procedure for predicting NOx emissions from furnaces,” Computers & Chemical Engineering, 25, 2001, pp. 613-618.
    35. Y. Kang, X. Lu, Q. Wang, X. Ji, , S. Miao, C. Zong, G. Luo and H. Liu, “An experimental and modeling study of NOx and CO emission behaviors of dimethyl ether (DME) in a boiler furnace,” Fuel Processing Technology, 122, 2014, pp. 129-140.
    36. S. A. Drennan, C. P. Chou, A. F. Shelburn, D. W. Hodgson, C. Wang, C. V. Naik, E. Meeks and H. Karim, “Flow field derived equivalent reactor networks for accurate chemistry simulation in gas turbine combustors,” ASME Paper GT2009-59861, 2009.
    37. E. M. M. Orbegoso, C. D. Romeiro, S. B. Ferreira and L. F. F. da Silva, “Emissions and thermodynamic performance simulation of an industrial gas turbine,” Journal of Propulsion and Power, 27, 2011, pp. 78-93.
    38. I. V. Novosselov, P. C. Malte, S. Yuan, R. Srinivasan and J. C. Y. Lee, “Chemical reactor network application to emissions prediction for industrial DLE gas turbine,” ASME Paper GT2006-90282, 2006.
    39. I. V. Novosselov and P. C. Malte, “Development and application of an eight-step global mechanism for CFD and CRN simulations of lean-premixed combustors,” Journal of Engineering for Gas Turbines and Power, 130, 2008, p. 021502.
    40. R. Hackney, S. K. Sadasivuni, J. W. Rogerson and G. Bulat, “Predictive emissions monitoring system for small Siemens dry low emissions combustors: validation and application,” ASME Paper GT2016-57656, 2016.
    41. A. Innocenti, A. Andreini, D. Bertini, B. Facchini and M. Motta, “Turbulent flow-field effects in a hybrid CFD-CRN model for the prediction of NOx and CO emissions in aero-engine combustor,” Fuel, 215, 2018, pp. 853-864.
    42. F. Xu, V. Nori, and J. Basani, “CO prediction for aircraft gas turbine combustors,” ASME Paper GT2013-94282, 2013.
    43. C. Russo, G. Mori, V. V. Anisimov and J. Parente, “Micro gas turbine combustor emissions evaluation using the chemical reactor modelling approach,” ASME Paper GT2007-27687, 2007.
    44. A. Andreini and B. Facchini “Gas turbines design and off-design performance analysis with emissions evaluation,” Journal of Engineering for Gas Turbines and Power, 126, 2004, pp. 83-91.
    45. S. Yousefian, G. Bourque and R. F. D. Monaghan, “Review of hybrid emissions prediction tools and uncertainty quantification methods for gas turbine combustion systems,” ASME Paper GT2017-64271, 2017.
    46. W. Polifke, K. Dobbeling, T. Sattelmayer, D. G. Nicol and P. C. Malte, “A NOx prediction scheme for lean-premixed gas turbine combustion based on detailed chemical kinetics,” Journal of Engineering for Gas Turbines and Power, 118, 1996, pp. 765-772.
    47. B. Wegner, U. Gruschka, W. Krebs, Y. Egorov, H. Forkel, J. Ferreira and K. Aschmoneit, “CFD prediction of partload CO emissions using a two-timescale combustion model,” Journal of Engineering for Gas Turbines and Power, 133, 2011,  p. 071502.
    48. N. Klarmann, B. T. Zoller and T. Sattelmayer, “Numerical modeling of CO-emissions for gas turbine combustors operating at part-load conditions,” Proceedings of Shanghai 2017 Global Power and Propulsion Forum, GPPS-2017-129, 2017.
    49. A. Bhargava, D. W. Kendrick, M. B. Colket, W. A. Sowa, K. H. Casleton and D. J. Maloney, “Pressure effect on NOx and CO emissions in industrial gas turbines,” ASME Paper 2000-GT-0097, 2000.
    50. D. L. Allaire, I. A. Waitz, and K. E. Wilcox, “A comparison of two methods for predicting emissions from aircraft gas turbine combustors,” ASME Paper GT2007-28346, 2007.
    51. F. Guethe, M. de la Cruz Garcia, and A. Burdet, “Flue gas recirculation in gas turbine: Investigation of combustion reactivity and NOx emission,” ASME Paper GT2009-59221, 2009.
    52. M. A. Soroudi, M. Yazdani, M. Abedini and Y. Bagheri, “Localization and development of Iranian national gas turbine combustion system technology,” First International Comprehensive Competition Conference of Engineering Sciences in Iran, Anzali, Iran, 2016. (In Persian) 
    53. K. Döbbeling, J. Hellat and H. Koch, “25 years of BBC/ABB/Alstom lean premix combustion technologies,” Journal of Engineering for Gas Turbines and Power, 129, 2005, pp. 2-12.
    54. A. H. Lefebvre and D. P. Ballal, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition, Taylor and Francis Group, New York, USA, 2010.
    55. M. A. Soroudi, E. Mollahasanzadeh and N. Rasooli, “Prediction of spark ignition performance in an industrial gas turbine combustor,” Proceedings of the 7th European Combustion Meeting (ECM2015), Budapest, Hungary, 2015.
    56. M. A. Soroudi, S. Hadi Bafekr, M. Timaji and N. Rasooli, “A priori calculation of lean blowout limit in an industrial gas turbine combustor,” Proceedings of the 6th European Combustion Meeting (ECM2013), Lund, Sweden, 2013.
    57. N. Safari, S. Montazerinejad, M. Shahsavari and M. A. Soroudi, “Thermoacoustic instability analysis in an industrial gas turbine combustor,” The Seventh Fuel and Combustion Conference of Iran (FCCI-2018), Sharif University of Technology, Tehran, Iran, 2018. (In Persian) 
    58. M. A. Soroudi and N. Rasooli, “Natural gas composition effects on DLE gas turbine combustor operability and emissions,” CSME International Congress, Toronto, Canada, 2014.
    59. S. L. Bragg, “Application of reaction rate theory to combustion chamber analysis,” Aeronautical Research Council Pub. ARC 16170, Ministry of Defense, London, England, 1953, pp. 1629-1633.
    60. A. M. Mellor, “Current kinetic modeling techniques for continuous flow combustors,” in Emissions from Continuous Combustion Systems, W. Coruelius and W.G. Agnew (Eds.), Plenum Press, New York, 1972.
    61. A. M. Mellor, “Gas turbine engine pollution,” in Pollution Formation and Destruction in Flames, Progress in Energy and Combustion Science, Vol. 1, N. A. Chigier (Ed.), Pergamon, Oxford, 1976.
    62. J. Swithenbank, I. Poll, M. Vincent and D. Wright, “Combustion design fundamentals,” Proceedings of the Combustion Institute, 14, 1973, pp. 627-638.
    63. D. S. Prior, J. Swithenbank and P. G. Felton, “Stirred reactor modelling of a low pollution liquid fuelled combustor,” in Turbulent Combustion, Progress in Astronautics and Aeronautics, Vol. 58, L. A. Kennedy (Ed.), 1978.
    64. N. K. Rizk, and H. C. Mongia, “A semianalytical emission model for diffusion flame, rich/lean and premixed lean combustors,” Journal of Engineering for Gas Turbines and Power, 117, 1995, pp. 290-301.
    65. H. Mohamed, H. Ben Ticha and S. Mohamed, “Simulation of pollutant emissions from a gas-turbine combustor,” Combustion Sciene and Technology, 176, 2004, pp. 819-834.
    66. N. T. Hao, “A chemical reactor network for oxides of nitrogen emission prediction in gas turbine combustor,” Journal of Thermal Science, 23, 2014, pp. 279–284.
    67. I. R. Sigfrid, R. Whiddon, R. Collin, and J. Klingmann, “Experimental and reactor network study of nitrogen dilution effects on NOx formation for natural gas and syngas at elevated pressures,” ASME Paper GT2013-94355, 2013.
    68. Y. Xiao, Y. Liu, Z. Zhang, W. Shao, F. Lei and H. Wang, “Experimental and numerical studies of pressure effects on syngas combustor emissions,” Applied Thermal Engineering, 102, 2016, pp. 318-328.
    69. A. B. Lebedev, A. N. Secundov, A. M. Starik, N. S. Titova and A. M. Schepin, “Modeling study of gas-turbine combustor emission,” Procideenigs of the Combustion Institute, 32, 2009, pp. 2941–2947.
    70. A. M. Starik, A. B. Lebedev, A. M. Savel’ev, N. S. Titova, and P. Leyland, “Impact of operating regime on aviation engine emissions: Modeling study", Journal of Propulsion and Power, 29, 2013, pp. 709-717.
    71. R. Xue, Ch. Hu, T. Nikolaidis and P. Pilidis, “Effect of steam addition on the flow field and NOx emissions for Jet-A in an aircraft combustor,” International Journal of Turbo & Jet-Engines. 33, 2015, pp381-393.
    72. M. Mancini, P. Schwöppe, R. Weber and S. Orsino, “On mathematical modelling of flameless combustion,” Combustion and Flame, 150, 2007, pp. 54–59.
    73. S. Correa, “Turbulence-chemistry interactions in the intermediate regime of premixed combustion,” Combustion and Flame, 93, 1993, pp. 41-60.
    74. J.-Y. Chen, “Stochastic modeling of partially stirred reactors,” Combustion Science and Technology, 122, 1997, pp. 63-94.
    75. M. Kraft, H. Fey, A. Schlegel, J.-Y. Chen, and H. Bockhorn, “A numerical study on the influence of mixing intensity on NOx formation,” Proceedings of the 3rd Workshop on Modelling of Chemical Reaction Systems, Heidelberg, Germany, 1997.
    76. A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi, S. Colantuoni, P. Di. Martino and G. Cinqu, “Experimental and modeling study of a low NOx combustor for aero-engine turbofan,” Combustion Science Technology, 181, 2009, pp. 483–495.
    77. A. Cuoci, A. Frassoldati, A. Stagni, T. Faravelli and E. Ranzi, “Numerical modeling of NOx formation in turbulent flames using a kinetic postprocessing technique,” Energy & Fuels, 27, 2013, pp. 1104–1122.
    78.  A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli and E. Ranzi, “A fully coupled, parallel approach for the post-processing of CFD data through reactor network analysis,” Computers & Chemical Engineering, 60, 2014, pp. 197–212.
    79. M. S. Skjoth-Rasmussen, O. Holm-Christensen, M. Stberg, T. S. Christensen, T. Johannessen, A. D. Jensen, P. Glarborg, and H. Livbjerg, “Postprocessing of detailed chemical kinetic mechanisms onto CFD simulations,” Computers & Chemical Engineering, 28, 2004, pp. 2351–2361.
    80. M. A. Soroudi, S. Montazerinejad and E. Mollahasanzadeh, “Equivalent chemical reactor network modeling of combustor and pollutant emissions prediction in gas turbine engines,” The Seventh Fuel and Combustion Conference of Iran (FCCI-2018), Sharif University of Technology, Tehran, Iran, 2018. (In Persian) 
    81. T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 3rd Ed., R.T. Edwards, 2012.
    82. M. Shahsavari, M. Farshchi and M. H. Arabnejad, “Large eddy simulations of unconfined non-reacting and reacting turbulent low swirl jets,” Flow, Turbulence and Combustion, 98, 2017, pp. 817-840.
    83. J. Smagorinsky, “General circulation experiments with the primitive equations,” Monsly Weather Review, 91, 1963, pp. 99-165.
    84. E. Mollahasanzadeh, M. A. Soroudi, Y. Bagheri, A. R. Mirbagheri, H. Khaledi, “Optimization of injector arrangement in an industrial gas turbine using LES,” 5th National Gas Turbine Conference, Iran University of Science and Technology, Tehran, Iran, 2016. (In Persian) 
    85. V. D. Vasil’ev, L. A. Bulysova, and A. L. Berne, “Effect of the air-fuel mixing on the NOх yield in a low-emission gas-turbine plant combustor,” Thermal Engineering, 63, 2016, pp. 246-252.
    86. Chemical Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html, Accessed on January 2018.
    87. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, Jr, V. V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/, Accessed on January 2018.
    88. A.  A.  Konnov and J.  De Ruyck, “Temperature dependent rate constant for the reaction NNH + O → NH + NO,” Combustion and Flame, 125, 2001, pp. 1258-1264.
    89. C. V. Naik, K. V. Puduppakkam, A. Modak, E. Meeks, Y. L.Wang, Q. Feng, and T. T. Tsotsis, “Detailed chemical kinetic mechanism for surrogates of alternative jet fuels,” Combustion and Flame, 158, 2011, pp. 434-445.
    90. C. W. Zhou, Y. Li, E. O’Connor, K. P. Somers, S. Thion, C. Keesee, O. Mathieu, E. L. Petersen, T. A. DeVerter, M. A. Oehlschlaeger, G. Kukkadapu, C. Sung, M. Al-Refae, F. Khaled, A. Farooq, P. Dirrenberger, P. A. Glaude, F. Battin-Leclerc, J. Santner, Y. Ju, T. Held, F. M. Haas, F.L. Dryer and H. J. Curran, “A comprehensive experimental and modeling study of isobutene oxidation,” Combustion and Flame, 167, 2016, pp. 353–379.
    91. D. Healy, D. M. Kalitan, C. J. Aul, E. L. Petersen, G. Bourque and H. J. Curran, “Oxidation of C1-C5 alkane quinternary natural gas mixtures at high pressures,” Energy & Fuels,  24, 2010, pp. 1521-1528.
    92. K. B. Fackler, M. F. Karalus, I. V. Novosselov, J. C. Kramlich and P. C. Malte, “Experimental and numerical study of NOx formation from the Lean premixed combustion of CH4 mixed with CO2 and N2,” ASME Paper GT2011-45090, 2011.
    93. M. Andersson, A. Larsson, and A. M. Carrera, “Pentane rich fuels for standard Siemens DLE gas turbines,” ASME Paper GT2011-46099, 2011.
    94. D. S. Han, G. B. Kim, H. S. Kim and C. H. Jeon, “Experimental study of NOx correlation for fuel staged combustion using lab-scale gas turbine combustor at high pressure,” Experimental Thermal and Fluid Science, 58, 2014, pp. 62–69.
    95. J.A. Miller, and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Progress in Energy and Combustion Science, 15, 1989, pp. 287-338.
    96. S. C. Hill, and L. Douglas Smoot, “Modeling of nitrogen oxides formation and destruction in combustion systems,” Progress in Energy and Combustion Science, 26, 2000, pp. 417-458.
    97. P. Glarborg, J. A. Miller, B. Ruscic, and S.J. Klippenstein, “Modeling nitrogen chemistry in combustion,” Progress in Energy and Combustion Science, 67, 2018, pp. 31-68.