بررسی اثر برخی پارامترهای مهم در تولید بیودیزل با استفاده از کاتالیست ناهمگن پتاسیم کربنات/آلومینا و روغن کلزا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علم و فناوری مازندران

2 استادیار، مهندسی شیمی، پژوهشگاه استاندارد، گروه پژوهشی پتروشیمی، البرز،

3 دانشگاه علم وفناوری مازندران

چکیده

سوخت زیستی بیودیزل، به­دلیل مزایای زیست­ محیطی و شباهت برخی خصوصیات آن با نفت­ گاز، به­عنوان جایگزینی مناسب برای سوخت­های فسیلی مورد توجه است. در این تحقیق، برای تولید بیودیزل از روغن پسماند کلزا در حضور کاتالیست K2CO3/Al2O3 استفاده شد. برای آماده­­سازی کاتالیست از روش حل­کردن K2CO3  بر Al2O3  استفاده شد. برای انجام واکنش ترانس استریفیکاسیون و بررسی اثر پارامترهای مختلف زمان واکنش، دما و درصد وزنی کاتالیست بر بازده­ تولید بیودیزل و بهینه­کردن تعداد آزمایش­­ها، از طراحی آزمایش­ تاگوچی، در طرح کاملاً تصادفی با دو تکرار، استفاده شد. همچنین، نسبت مولی متانول به روغن 15 به 1، میزان کاتالیست 5/0، 1،  5/1، 2، 3 و 5 درصد وزنی، دمای واکنش 55، 65 و 75 درجه سانتی­گراد، زمان واکنش  5/0، 1، 5/1، 2، 5/2 و 3 ساعت و دور همزن rpm 600  درنظر گرفته شد. بهترین بازده تولید بیودیزل (99 درصد)، پس از 2 ساعت با استفاده از 1 درصد وزنی کاتالیست ناهمگن پتاسیم­کربنات/آلومینا در دمای C°65 حاصل می­شود. از سوی دیگر، مقایسه نتایج حاصل با مطالعات سایر محققان نشان می­دهد بارگذاری K2CO3نسبت به  KNO3و Ca(NO3)2، می­تواند بازده تولید بیودیزل را در کاتالیست­های با پایه آلومینا افزایش دهد. تحلیل واریانس با درنظر گرفتن متغیرهای میزان کاتالیست، زمان و دمای واکنش، بیانگر آن است که تغییرات دما اثر معنادار بر بازده تولید متیل استر ندارد، لیکن اثر تغییرات زمان و میزان کاتالیست مورد استفاده بر درصد تبدیل واکنش کاملاً معنادار است.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Important Parameters on Biodiesel Production using Heterogeneous Potassium Carbonate/Alumina Catalyst and Rapeseed Oil

نویسندگان [English]

  • elmira yazdanian 1
  • Nooshin Gholipour Zanjani 2
  • arash kamran-pirzaman 3
1 University of Science and Technology of Mazandaran
2 2- Department of Chemical Engineering, Standard Research Institute, Petrochemical Research Group, Alborz, Iran,
3 mazandaran university of science and technology
چکیده [English]

Biodiesel, due to its environmental benefits and similar properties with diesel, is considered as a fossil fuel alternative. Rapeseed oil is used to produce biodiesel in presence of K2CO3/Al2O3. For catalyst preparation K2CO3 was loaded on the Al2O3 as support using impregnation. Taguchi’s experimental setup was used in a completely randomized design with two replications for transesterification reaction and investigating the effects of reaction time, temperature and catalyst concentration on biodiesel production efficiency and to optimize the number of experiments. Also, molar ratio of 15 to 1 (alcohol:oil), catalyst concentrations of 0.5, 1, 1.5, 2, 3 and 5 wt.%, reaction temperatures of 55, 65 and 75 °C, reaction times of 0.5, 1, 1.5, 2, 2.5 and 3 hr. and stirring rate of 600 rpm was used for transesterification reaction. Highest biodiesel yield (99%) was obtained by transesterification process at 65 °C using 2 wt. % of K2CO3/Al2O3 for 2 hr. Comparing these results to other researcher’s results shows that the loading ratio of K2CO3 compared to KNO3 and Ca(NO3)2 can increase the biodiesel production efficiency in alumina-based catalysts. Analysis of variance analysis with regard to catalyst, reaction time and temperature variables indicates that temperature changes have no significant effect on the efficiency of methyl ester production, but the effects of time and catalyst concentration on the reaction rate is quite significant.
 

کلیدواژه‌ها [English]

  • Biodiesel
  • Heterogeneous catalyst
  • Potassium Carbonate/Alumina
  • Transesterification
1. J. Sheehan, V. Camobreco, J. Duffield and M. Graboski, Life cycleinventory of biodiesel and petroleum diesel for use in an urban bus, National Renewable Energy Laboratory, N.R.E.L./SR-580-24089 UC Category 1503, 1998.
2. H. Baghparpour, B. Ghobadian, A.Znouzi, T.Tavakoli, A. Mohammadi and M. Feyzalanezhad, “Biodiesel production of waste oil using transesterification method,” 5th National Congress of Agricultural Machinery Engineering and Mechanization, Tarbiat Modares University, Tehran, 2010. (In Persian)
3. L. Lin, Z. Cunshan, S. Vittayapadung, S. Xiangqian and D. Mingdong, “Opportunities and challenges for biodiesel fuel,” Apply Energy, 88, 2011, pp. 1020-1031.
4. A. Demirbas, “New liquid biofuels from vegetable oils via catalytic pyrolysis,” Energy Educ Sci Technol, 21, 2008, pp.1-59.
5. Y. Zhang, M. A. Dube, D. D. McLean and et al, “Biodiesel production from waste cooking oil, process design and technological assessment,” Bioresour Technol, 89, 2003, pp. 1-16.
6. I. Reyero, G. Arzamendi, S.Zabala, and L. M. Gandía, “Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel,” Fuel Processing Technology, 129, 2015, pp.147-155.
7. M. Charoenchaitrakool, and J. Thienmethangkoon, “Statistical optimization for biodiesel production from waste frying oil through two-step catalyzed process,” Fuel Processing Technology, 92, 2011, pp.112-118.
8. X. Liang, S. Gao, H. Wu and J. Yang, “Highly efficient procedure for the synthesis of biodiesel from soybean oil,” Fuel Processing Technology, 90, 2009, 701-704.
9. M. Canakci and J. Van Gerpen, “A Pilot Plant to produce Biodiesel from High Free fatty acid Feedstocks,” American Society of Agricultural Engineers Journal, 46, 2003, pp. 945-954.
10. S.H, Hanis Yasmin Sayid Abdullah, N. Hanis Mohamad Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon and A. Endut, “A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production,” Renewable and Sustainable Energy Reviews, 70, 2017, pp. 1040-1051.
11. S. Qing, G. Jixian, L. Yuhui, and W. Jinfu, “Reaction Kinetics of Biodiesel Synthesis from Waste Oil Using a Carbon-based Solid Acid Catalyst,” Chinese Journal of Chemical Engineering, 19. 201, pp. 163-168.
12. A. C. Alba-Rubio, M. L. Alonso Castillo, M. C. G. Albuquerque, R. Mariscal, C. L. Cavalcante Jr and M. Lopez Granados, “A new and efficient procedure for removing calcium soaps in biodiesel obtained using CaO as a heterogeneous catalyst,” Fuel, 95, 2012, pp. 464-70.
13. F. Goodarzi and A. Izadi Bakhsh, “Study on the review of the production of biodiesel by using acid, game and enzyme catalysts,” National Conference on Modern Technologies in Chemistry and Chemical Engineering, Tehran, Iran, 2013. (In Persian) 
14. Y. Watanabe, Y. Shimada, A. Sugihara and et al, “Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor,” Journal of the American Oil Chemists Society, 78, No. 7, 2001, pp. 703-707.
15. H. Sun, Y. Ding, J. Duan, Q. Zhang, Z. Wang, H. Loua and X. Zheng, “Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst,” Bioresource Technology, 101, 2010, pp. 953-958.
16. H. Haziratul Mardhiah, H. Chyuan Ong, H. H. Masjuki, S.Lim and H. V. Lee, “A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils,” Renewable and Sustainable Energy Reviews, 67, 2017, pp. 1225-1236.
17. N. Degirmenbasi, S. Coskun, N. Boz and D. M. Kalyon. “Biodiesel synthesis from canola oil via heterogeneous catalysis using functionalized CaO nanoparticles,” Fuel, 153, 2015, pp. 620-627.
18. I. Lukic, J. Krstic, D. Jovanovi and D. Skala, “Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil”, Bio resource Technology, 100, 2009, pp. 4690-4696.
19. K. Colombo, L. Ender and A. Andre Chivanga Barros, “The study of biodiesel production using CaO as a heterogeneous catalytic reaction,” Egyptian Journal of Petroleum, 26, 2017, pp. 341-349.
20. W. Xie, H. Peng and L. Chen, “Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst,” Applied Catalysis A: General, 300, 2006, pp. 67-74.
21. M. Omraei, Production of biodiesel from rapeseed oil using heterogeneous catalyst, Master's Thesis, Department of Chemical Engineering, Tarbiat Modares University, Tehran, 2011. (In Persian) 
22. M. Agarwal, G. Chauhan, S. P. Chaurasia and K. Singh, “Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production,” Journal of the Taiwan Institute of Chemical Engineers, 43, 2012, 89-94.
23. S. Benjapornkulaphong, C. Ngamcharussrivichai and K, Bunyakiat, “Al2O3 supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil,” Chemical Engineering Journal, 145, 2009, pp. 468-474.
24. J. Pauloda Costa Evangelista, A. DuarteGondim, L. DiSouza, A. SouzaAraujo, “Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel production,” Renewable and Sustainable Energy Reviews, 59, 2016, pp. 887-894.
25. N. Boz and M. Kara, “Solid base catalyzed transesterification of Canola oil,” Chemical Engineering Communications, 196, 2008, pp. 79 -92.
26. P. E. Range, E. R. Lachter, R. AS San Gil, A. V. Coelho, I. A. Sidi, R. L. Poubel, A. da Costa Faro Jr and A. LF de Souza, “Characterization and catalytic activity of K2CO 3/AL2O3 in the transesterification of sunflower oil with  conventional heating and microwaves” Chem. Nova, 38, 2015, pp. 4023-4042.
27. G. H. Moradi, M. Mohadesi, R. Rezaei and R. Moradi, “Biodiesel Production using CaO/γ-Al2O3 Catalyst Synthesized by Sol-Gel Method” The Canadian Journal of Chemical Engineering, 93, 2015, pp. 1531-1538.
28. Y. Tang, H. Ren, F. Chang, X. Gu and J. Zhang, “Nano KF/Al2O3 particles as an efficient catalyst for no-glycerol biodiesel production by coupling transesterification,” The Royal Society of Chemistry, 7, 2017, pp. 5694-5700.
29. C. A. G. Zapata, D. B. Martínez, C. A. Collazos, H. E. C. Acuña, J. A. Cuervo and C.P. Fernandez, “Productions of sunflower oil biodiesel and used cooking oil through heterogeneous catalysts compared to conventional homogeneous catalysts,” Journal of Physics: Conference Series, 786, 2017, pp. 20-25.
30. H. Noureddini and D. Zhu, Kinetics of Transesterification of Soybean Oil, Journal of the American Oil Chemists’ Society, 74, No. 11, 1997, pp. 1457-1463.