مطالعه تجربی احتراق مخلوط آمونیاک-متان در محفظه احتراق میکروتوربین گازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده هوافضا، دانشگاه امیرکبیر، تهران، ایران

2 دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر

3 گروه پیشرانش، دانشکده هوافضا، دانشگاه امیرکبیر، تهران، ایران

چکیده

برای رسیدن به هدف انتشار کربن صفر، جایگزین کردن سوخت‌های هیدروکربنی معمول با سوخت‌های بدون کربن، از اهمیت بالایی برخوردار است. از نظر سوخت بدون کربن، آمونیاک در کنار مشکلاتی چون سرعت شعله پایین و انتشار آلایندگی NOx بالا، مزایای متعددی نسبت به هیدروژن دارد.

از این رو، مطالعه تجربی حاضر به بررسی اثر افزودن آمونیاک به متان و نسبت آن بر روی عملکرد احتراقی یک محفظه احتراق میکروتوربینی از نوع قوطی در شرایط اتمسفریک در دو توان حرارتی مختلف می‌پردازد. نتایج نشان می‌دهد که با افزایش درصد آمونیاک در سوخت، بیشینه دمای شعله کاهش پیدا کرده و احتراق تا ناحیه‌ی انتهایی محفظه به تاخیر افتاده است. همچنین، افزودن آمونیاک، علی‌رغم عدم کاهش CO، افزایش شدید مقدار NOx تولیدی محفظه را به همراه دارد. بعلاوه، اگرچه دمای خروجی محفظه بجز یک حالت، تغییر چندانی نداشته ولی بازده احتراقی محفظه با افزایش نسبت آمونیاک، افت کرده و متغیر یکپارچگی در صورت استفاده از آمونیاک، بیشتر از حالت 100% گاز طبیعی است. بنابراین، اگرچه استفاده از مخلوط سوخت آمونیاک/ متان با شرایط احتراق پایدار در محفظه‌ی موجود، ممکن است ولی برای رسیدن به عملکرد مطلوب احتراقی، اصلاحات جدی نیاز دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental study of Ammonia-Methane mixture combustion in the micro gas turbine combustor

نویسندگان [English]

  • Milad Bastani 1
  • Sadegh Tabejamaat 2
  • Hossein Ashini 3
1 Aerospace department, Amirkabir university, Tehran, Iran
2 Department of Aerospace Engineering, Amirkabir University of Technology
3 Aerospace department, Amirkabir university, Tehran, Iran
چکیده [English]

To achieve the zero carbon emissions goal, it is of great importance to replace conventional hydrocarbon fuels with carbon-free fuels. In terms of carbon-free fuel, ammonia has several advantages over hydrogen, despite of problems such as low flame speed and high NOx emission. The present experimental study investigates the effect of adding ammonia to methane and its ratio on the combustion performance of a can-type micro-turbine combustion chamber under atmospheric condition at two different heat powers. The results show that with an increase in the percentage of ammonia in the fuel mixture, maximum flame temperature has decreased and combustion has delayed until the end of chamber. Also, the addition of ammonia, despite not reducing CO, results in a sharp increase in the NOx production. In addition, although the outlet temperature of the chamber has not changed much except for one condition, combustion efficiency of the chamber has decreased with the increase of ammonia ratio, and pattern factor is more than the case of pure natural gas. Therefore, although the use of methane/ammonia fuel mixture with stable combustion conditions in the existing chamber is possible, it requires modifications to achieve optimal combustion performance.a
 
.

کلیدواژه‌ها [English]

  • Microturbine combustion chamber
  • Ammonia
  • Methane
  • Mixing percentage
  • Performance parameter
1-Valera-Medina, A., Marsh, R., Runyon, J., Pugh, D., Beasley, P., Hughes, T. and Bowen, P., "Ammonia–methane combustion in tangential swirl burners for gas turbine power generation," Applied Energy, vol. 185, pp. 1362-1371, 2017.
2- Dimitriou, P. and Javaid, R., "A review of ammonia as a compression ignition engine fuel," International Journal of Hydrogen Energy, Vol. 45, No. 11, pp.7098-7118, 2020.
3- Valera-Medina, A., Amer-Hatem, F., Azad, A.K., Dedoussi, I.C., De Joannon, M., Fernandes, R.X., Glarborg, P., Hashemi, H., He, X., Mashruk, S. and McGowan, J., "Review on ammonia as a potential fuel: from synthesis to economics," Energy & Fuels, Vol. 35, No. 9, pp. 6964-7029, 2021.
4- Dai, L., Gersen, S., Glarborg, P., Levinsky, H. and Mokhov, A., "Experimental and numerical analysis of the autoignition behavior of NH3 and NH3/H2 mixtures at high pressure," Combustion and flame, vol. 215, pp.134-144, 2020.
5- Dai, L., Gersen, S., Glarborg, P., Mokhov, A. and Levinsky, H., "Autoignition studies of NH3/CH4 mixtures at high pressure," Combustion and Flame, Vol 218, pp.19-26, 2020.
6- Xiao, H., Lai, S., Valera‐Medina, A., Li, J., Liu, J. and Fu, H., "Experimental and modeling study on ignition delay of ammonia/methane fuels," International Journal of Energy Research, Vol. 44, No. 8, pp.6939-6949, 2020.
7- Okafor, E.C., Naito, Y., Colson, S., Ichikawa, A., Kudo, T., Hayakawa, A. and Kobayashi, H., "Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames," Combustion and flame, Vol. 187, pp.185-198, 2018.
8- Okafor, E.C., Naito, Y., Colson, S., Ichikawa, A., Kudo, T., Hayakawa, A. and Kobayashi, H., "Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism," Combustion and Flame, Vol. 204, pp.162-175, 2019.
9- Shrestha, K.P., Lhuillier, C., Barbosa, A.A., Brequigny, P., Contino, F., Mounaïm-Rousselle, C., Seidel, L. and Mauss, F., "An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature," Proceedings of the Combustion Institute, Vol. 38, No. 2, pp.2163-2174, 2021.
10- Chai, W.S., Bao, Y., Jin, P., Tang, G. and Zhou, L., "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Vol. 147, p.111254, 2021.
11- Zitouni, S.E., Mashruk, S., Mukundakumar, N., Brequigny, P., Zayoud, A., Pucci, E., Macchiavello, S., Contino, F., Mounaïm-Rousselle, C., Bastiaans, R. and Valera-Medina, A., "AMMONIA BLENDED fuels–energy solutions for a green future," in 10th International Gas Turbine Conference, October, 2021.
12- Shu, T., Xue, Y., Zhou, Z. and Ren, Z., "An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames," Fuel, vol. 290, p.120003, 2021.
13- Xiao, H., Valera-Medina, A. and Bowen, P.J., "Study on premixed combustion characteristics of co-firing ammonia/methane fuels," Energy, Vol. 140, pp.125-135, 2017.
14- Xiao, H., Lai, S., Valera-Medina, A., Li, J., Liu, J. and Fu, H., "Study on counterflow premixed flames using high concentration ammonia mixed with methane," Fuel, Vol. 275, p.117902, 2020.
15- Lee, J.H., Lee, S.I. and Kwon, O.C., "Effects of ammonia substitution on hydrogen/air flame propagation and emissions," International journal of hydrogen Energy, Vol. 35, No. 20, pp.11332-11341, 2010.
16- Zhang, M., An, Z., Wei, X., Wang, J., Huang, Z. and Tan, H., "Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor," Fuel, Vol. 291, p.120135, 2021.
17- Zhang, M., An, Z., Wang, L., Wei, X., Jianayihan, B., Wang, J., Huang, Z. and Tan, H., "The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor," International Journal of Hydrogen Energy, vol. 46, No. 40, pp.21013-21025, 2021.
18- An, Z., Zhang, M., Zhang, W., Mao, R., Wei, X., Wang, J., Huang, Z. and Tan, H., "Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method," Fuel, Vol. 304, p.121370, 2021.
19- Xiao, H., Valera-Medina, A., Marsh, R. and Bowen, P.J., "Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions," Fuel, Vol. 196, pp.344-351, 2017.
20- Xiao, H., Howard, M., Valera-Medina, A., Dooley, S. and Bowen, P.J., "Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions," Energy & Fuels, Vol. 30, No. 10, pp.8701-8710, 2016.
21- Valera-Medina, A., Morris, S., Runyon, J., Pugh, D.G., Marsh, R., Beasley, P. and Hughes, T., "Ammonia, methane and hydrogen for gas turbines," Energy Procedia, Vol. 75, pp.118-123, 2015.
22- Miller, J.A. and Bowman, C.T., "Mechanism and modeling of nitrogen chemistry in combustion," Progress in energy and combustion science, Vol. 15, No. 4, pp.287-338, 1989.
23- Zhou, L.X., Chen, X.L. and Zhang, J., "Studies on the effect of swirl on no formation in methane/air turbulent combustion," Proceedings of the Combustion Institute, Vol. 29. No. 2, pp.2235-2242, 2002.
24- Buekens, A., "Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation," International Journal of Environment & Pollution, Vol. 17. No. 3, pp.291-291, 2002.
25- Ariemma, G.B., Sorrentino, G., Ragucci, R., de Joannon, M. and Sabia, P., "Ammonia/Methane combustion: stability and NOx emissions," Combustion and Flame, Vol. 241, p.112071, 2022.
26- Ariemma, G.B., Bozza, P., de Joannon, M., Sabia, P., Sorrentino, G. and Ragucci, R., "Alcohols as energy carriers in MILD combustion," Energy & Fuels, Vol. 35. No. 9, pp.7253-7264, 2021.
27- Sabia, P., Sorrentino, G., Bozza, P., Ceriello, G., Ragucci, R. and De Joannon, M., "Fuel and thermal load flexibility of a MILD burner," Proceedings of the Combustion Institute, Vol. 37. No. 4, pp.4547-4554, 2019.
28- Sabia, P., Manna, M.V., Ragucci, R. and de Joannon, M., "Mutual inhibition effect of hydrogen and ammonia in oxidation processes and the role of ammonia as “strong” collider in third-molecular reactions," International Journal of Hydrogen Energy, Vol. 45. No. 56, pp.32113-32127, 2020.
29- Glarborg, P., Miller, J.A., Ruscic, B. and Klippenstein, S.J., "Modeling nitrogen chemistry in combustion," Progress in energy and combustion science, Vol. 67, pp.31-68, 2018.
30- Lefebvre, A.H. and McDonell, V.G., Atomization and sprays. CRC press, 2017.
31- Lefebvre, A.H. and Ballal, D.R., Gas turbine combustion: alternative fuels and emissions. CRC press, 2010.