مطالعه تجربی و شبیه‌سازی سه‌بعدی کوره‌ دوار ریخته‌گری چدن با یک مشعل گازسوز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 امور پژوهش و فناوری شرکت گاز استان تهران

چکیده

در این پژوهش، شبیه‌سازی عددی یک کوره‌ دوار ریخته‌گری گازسوز 350 کیلوگرمی چدن و بهینه‌سازی مصرف سوخت آن به روش دینامیک سیالات محاسباتی بررسی می‌شود. برای شبیه‌سازی، این کوره‌ به سه ناحیه مجزا تقسیم می‌شود: الف) ناحیه بار جامد با فاز مایع-جامد، ب) ناحیه احتراقی با فاز گازی و ج) ناحیه جامد دوار یا دیواره‌ی نسوز کوره. این سه ناحیه به صورت سه‌بعدی و گذرا با لحاظ برهمکنش‌های بین فصول مشترک نواحی فوق، شبیه‌سازی شده‌اند. در هر ناحیه، شبیه‌سازی بر مبنای حل هم زمان معادلات هیدرودینامیکی از جمله اتلاف گردابه و معادلات مربوط به واکنش‌های شیمیایی صورت می‌گیرد. نتایج شبیه‌سازی دمای جداره بیرونی بدنه کوره با داده های صنعتی مطابقت دارند که اعتبار مدل عددی را اثبات می‌کنند. در این شبیه سازی، نرخ ذوب‌دهی، تولید آلاینده‌های NOx و CO و مصرف ویژه‌ی سوخت،. سرعت دورانی، پیش‌گرمایش هوای احتراق، تغییر درصد هوا و تولید آلاینده‌‌های آنها نیز بررسی شد. تغییر پیکره‌بندی کوره دوار موجب کاهش 5% مصرف سوخت می‌شود که از نظر بهینه سازی مصرف سوخت و کیفیت آلیاژ تولیدی در این کوره حائز اهمیت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An experimental study and 3D simulation of a cast iron rotary

نویسندگان [English]

  • Behzad Bayramlou 1
  • Seyed Mohammad Mirnajafi 2
  • Rahmat Sotudeh-Gharebagh 1
1 University of Tehran
2 NIGC
چکیده [English]

 In this study, the computational fluid dynamics (CFD) simulation of an experimental 350 kg cast iron rotary furnace was conducted for the aim of optimizing its fuel consumption and pollutants reduction. The furnace is divided into 3 distinct simulation zones: a) solid charge zone with liquid-solid phase, b) combustion zone with gas phase, and c) solid rotating zone or furnace refractory wall. These three zones are three-dimensionally and transiently modeled in terms of the leading phenomena within each zones and interfaces. The simulation in each region is based on the simultaneous solution of hydrodynamic equations, including vortex dissipation and chemical reaction kinetics equations. The simulation results for the outside wall temperature of the furnace body are in close agreement with the data obtained from experimental units. Furthermore, melting rate, NOx and CO pollutant generation, specific fuel consumption, rotating speed, preheating of combustion air, excess air percentage, and pollutant production were all evaluated in this simulation. Changing the furnace configuration decreases fuel consumption by 5%, which is important in terms of improving fuel consumption and alloy product quality in this furnace.  The results of this study can be used to optimize the industrial rotary furnace operations.
 

کلیدواژه‌ها [English]

  • Rotary furnace
  • natural gas
  • computational fluid dynamics
  • combustion
  • melting
      Z. Gholamreza, and A. Zahra, Estimating the level of support for the country's steel industry, Business Research Journal, University of Sistan and Baluchestan, pp. 137-149, Zahedan, 2011.
2.   C. E. Baukal Jr, Oxygen-enhanced combustion, Air products and chemicals Inc., Allentown, Pensylvania, CRC press, 2010.
3.   J. A. Green, Aluminum recycling and processing for energy conservation and sustainability, ASM International, Materialspark, Ohio, 2007.
4.   J. G. Kaufman, and E. L. Rooy, Aluminum alloy castings: properties, processes, and applications, Asm International, Materialspark, Ohio, 2004.
5.   P. R. Bruggink, and K. J. Martchek, “Worldwide recycled aluminum supply and environmental impact model,” LIGHT METALS-WARRENDALE-PROCEEDINGS, TMS, Charlotte, North Carolina, 2004.
6.   Last investigation, Introduction, Title: Investigation of the condition of furnaces and burners of industrial units in Tehran province in the fields of smelting and heat treatment of metals and glass smelting, report, Tehran, 2002.
7.   A. A. Koodehi, S. V. Givi, and H. Haghighipour, “A natural gas burner and combustion system for casy iron rotary furnaces,”  Fourth Iran Fuel and Combustion Conference, Iran, 2012.
8.   S. O. Omole, and R. T. Oluyori, “Optimization of recuperative system in rotary furnace for minimization of elemental loss during melting”, Journal of Minerals and Materials Characterization and Engineering, 2, No. 06, 2014, p. 579-585.
9.   J. Colannino, D. W. Karkow and C. A. Wiklof, Perforated burner for a rotary kiln, 2017, Google Patents, Accessed 28 Nov. 2017.
10. R. Bandyopadhyay and et al., “Assessment of ash deposition tendency in a rotary kiln using Thermo-mechanical analysis and Experimental Combustion Furnace”, Fuel, 135, 2014, pp. 301-307.
11. S. P. Gangoli and et al., Selective oxy-fuel burner and method for a rotary furnace, 2017, Google Patents, Accessed 27 Jun. 2017.
12. Sh. Marzban Shirkharkolai and A. Marzban Shirkharkolai “Border guards of infants, pollution from cast iron rotary furnaces,” second conference on environmental planning and management, Tehran, 1391.
13. G. Patange, and M. Khond, “Some studies on energy consumptions and identification of suitable energy management techniques in Indian foundry industries,” European Scientific Journal (ESJ), 9, No. 24, 2013, pp. 56-64.
14. R. I. Singh, A. Brink and M. Hupa, “CFD modeling to study fluidized bed combustion and gasification” Applied Thermal Engineering,” 52, No. 2, 2013, pp. 585-614.
15. B. Mayr and et al., “CFD and experimental analysis of a 115 kW natural gas fired lab-scale furnace under oxy-fuel and air–fuel conditions,” Fuel, 159, 2015, pp. 864-875.
16. M. Rahimpour, K. Mazaheri and S. H. Seyedein, “Numerical Study of the Effect of Burner Angle on Melting Rate in an Aluminum Rotary Furnace,” Modares Mechanical Engineering, 14, No. 16, 2015, pp. 252-260.
17. T. Bourgeois and et al., “Mathematical modeling of an aluminum casting furnace combustion chamber,” Metallurgical and Materials Transactions B, 20, No. 3, 1989, pp. 421-429.
18. C. Hoogendoorn, C. Koster and J. Wieringa, “Computational modelling of turbulent flow, combustion and heat transfer in glass furnaces,” Sadhana, 19, No. 5, 1994, pp. 723-749.
19. A. O. Nieckele, M. F. Naccache and M. S. P. Gomes, “Combustion performance of an aluminum melting furnace operating with natural gas and liquid fuel,” Applied Thermal Engineering, 31, No. 5, 2011, pp. 841-851.
20. D. R. Jain, “Experimental investigations of effect of oxygen enrichment of preheated air on performance,” Specific fuel and Energy Consumption of Rotary Fired Furnace. IJPSS, ISSN, 8, 2012, pp. 2249-5894.
21. R. Jain, “Regression Analysis of Innovative Melting Technique for Energy Conservation in Foundry Industry,” Indian Foundry Journal, 60, No. 10, 2014, pp. 29-34.
22. R. Jain, “Modeling, Optimization and Simulation of input parameters for optimum specific fuel (energy) consumption of LDO fired Rotary furnace,” International Journal of Applied Engineering Research, 2, No. 1, 2011, pp. 38-47.
23. C. Belt, “Current State of Aluminum Melting and Holding Furnaces in Industry,” JOM, 67, No. 11, 2015, pp. 2690-2695.
24. R. Prieler and et al., “Evaluation of a steady flamelet approach for use in oxy-fuel combustion,” Fuel, 118, 2014, pp. 55-68.
25. A. Fazl Elahi Qomshi, and A. Mardani, “Numerical simulation of combustion flow in the combustion chamber of a gas turbine model with dual torsional air inlet technology,” Fuel and Combustion, 9, No. 2, 2016, pp. 15-29
6.   A. Gunnarsson and et al., “Radiative heat transfer conditions in a rotary kiln test furnace using coal, biomass, and cofiring burners,” Energy & Fuels, 31, No. 7, 2017, pp. 7482-7492.
27. H. Elattar, et al., “CFD simulation of confined non-premixed jet flames in rotary kilns for gaseous fuels,” Computers & Fluids, 102, 2014, pp. 62-73.
28. A. Parente, C. Galletti, and L. J. I. j. o. h. e. Tognotti, “Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels,” International journal of hydrogen energy, 33, No. 24, 2008, pp. 7553-7564.
29. R. Prieler and et al., “Numerical investigation of the steady flamelet approach under different combustion environments,” Fuel, 140, 2015, pp. 731-743.
30. D. Lupant, and P. J. A. T. E. Lybaert, “Assessment of the EDC combustion model in MILD conditions with in-furnace experimental data,” Applied Thermal Engineering, 75, 2015, pp. 93-102.
31. Y. Ding and et al., “Experimental and numerical simulation of multi-component combustion of typical charring material,” Combustion and Flame, 211, 2020, pp. 417-429.
32. M. Y. Chernetskiy and et al., “Comparative analysis of turbulence model effect on description of the processes of pulverized coal combustion at flow swirl,” Thermophysics and aeromechanics, 23, No. 4, 2016, pp. 591-602.
33. N. K. Sahu, M. Kumar and A. J. J. o. E. R. T. Dewan, “Computational Study of 16 KWth Furnace Cofired Using Pulverized Bituminous Coal and LPG Operated in Un-Staged and Air-Staged Conditions,” Journal of Energy Resources Technology, 2020, pp. 1-38.
34. N. Bohlooli Arkhazloo, Optimization of furnace residence time and ingots positioning during the heat treatment process of large size forged ingots, Doctoral dissertation, École de technologie supérieure.
35. J. Coringa and et al., “Numerical investigation for steam tubes temperature reduction in a four fuels tangentially fired boiler,”  Applied Thermal Engineering,  115656179, 2020, pp. 179-186,.
36. A. Kumar and et al., “CFD analysis of solar air heater having corrugated absorber plate,” International Journal of Emerging Technology and Advanced Engineering, 7, No. 9, 2017, pp. 575-5587.
37. M. F. Modest, “The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer,” Journal of heat transfer, 113, Issue 3, 1991, pp. 650-656.
38. T. Smith, Z. Shen and J. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model,” Journal of heat transfer, 104, Issue 4, 1982, pp. 602-608.
39. D. Edwards, and R. Matavosian, “Scaling rules for total absorptivity and emissivity of gases,” Journal of heat transfer, 106, Issue 4, 1984, pp. 684-689.
40. A. Brent, V. Voller and K. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal,” Numerical Heat Transfer, Part A Applications, 13, No. 3, 1988, pp. 297-318.
41. University of California at San Diego, “Chemical-Kinetic Mechanisms for Combustion Applications,” San Diego Mechanism. [Online], 2016, Available from: Available (online), http://combustion.ucsd.edu, 2011.
42. G. P. Smith, 1999, GRI-Mech 3.0. http://www.me.berkley.edu/gri_mech/.
43. A. Kazakov, and M. Frenklach, Reduced reaction sets based on GRI-Mech 1.2. University of California at Berkeley, Berkeley, CA, 1994, http://www.me.berkeley.edu/drm.
44. T. Peeters, Numerical modeling of turbulent natural-gas diffusion flames, PhD thesis,Delft Technical University, Delft, The Netherlands, 1995.
45. Y. Zeldovich, D. Frank-Kamenetskii and P. Sadovnikov, Oxidation of nitrogen in combustion, Publishing House of the Acad of Sciences of USSR, Moscow, 1947.
46. C. Fenimore, “Formation of nitric oxide in premixed hydrocarbon flames,” Symposium (international) on combustion, Elsevier,Volume 13, Issue 1, pp. 373-380, 1971.
47. S. De, and G. DE Soete, “Overall reaction rates of NO and N2 formation from fuel nitrogen,” Symposium (International) on Combustion, Vol. 15, No. 1, 1975, pp. 1093- 1102.
48. T. Smith, Z. Shen, and J. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model,” Journal of heat transfer, 104, No. 4, 1982, pp. 602-608.
49. FLUENT, A., 14.5 User’s & Tutorial Guide, ANSYS Inc., Canonsburg, PA, 2012.
50. B. Zhou and et al., “CFD-based process modelling of a rotary furnace for aluminium scrap melting,” Home, Progress in Computational Fluid Dynamics, CFD-based process modelling of a rotary furnace, 7, No.2-4, 2007, pp. 195-208.
51. A. J. F. Mardani, “Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2,” Fuel, 191, 2017, pp. 114-129