مطالعه عددی مشخصه های احتراقی مخلوط استوکیومتری هیدروژن – هوا در محفظه موج تراک چرخشی (RDE)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شیراز

2 دانشگاه صنعتی شریف، دانشکده مهندسی هوا فضا

3 استادیار، مهندسی مکانیک، دانشگاه شیراز، شیراز

چکیده

 به ­علت بازده بالاتر موج تراک در مقایسه با موج دفلگریشن، در سال ­های اخیر، توجه به استفاده از امواج تراک در موتورها جلب شده است. به این­ منظور، موتورهای مختلفی نظیر موتورهای تراک پالسی و موتور تراک چرخشی پیشنهاد می ­شود. با توجه به عملکرد بهتر موتورهای تراک چرخشی، هدف از کار حاضر بررسی انتشار موج تراک درون محفظه تراک چرخشی (RDE) به­ صورت عددی و با رویکرد سه­ بعدی است. برای این منظور از معادلات ناویراستوکس به ­همراه معادله انرژی و معادله بقای گونه برای جریان واکنشی استفاده خواهد شد. با توجه به حجم بالای محاسبات، در پژوهش حاضر از واکنش شیمیایی یک ­مرحله­ای استفاده می ­شود. نتایج پژوهش حاضر با نتایج مربوط به موج تراک چپمن-ژوگیت مقایسه شد. نتایج نشان می ­دهد که تطابق خوبی بین نتایج مربوط به دما و سرعت موج در شبیه­ سازی حاضر با داده­ های مربوط به تراک CJ وجود دارد. همچنین، با توجه به نتایج شبیه ­سازی ساختار موج تراک به­ خوبی استخراج شد، به ­طوری که بعد از ایجاد جرقه اولیه، موج تراک ایجاد شده و با سرعت مشخص شروع به حرکت می­ کند. در ادامه پارامترهای عملکردی محفظه حاضر، به­منظور به کارگیری در موتورهای توربینی، با استفاده از پارامترهای مختلف بررسی می ­شود که نشان از عملکرد قابل توجه این نوع محفظه ­ها  در مقایسه با سایر تجهیزات دارد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of combustion characteristics for stoichiometric hydrogen-air mixture in rotating detonation engine (RDE)

نویسندگان [English]

  • Alireza Alipoor 1
  • محمد فرشچی 2
  • Hossein Ali Pakravan 3
1 Shiraz University
2 Department of Aerospace Engineering, Sharif University of Technology, Azadi Street, Tehran, Iran.
3 School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
چکیده [English]

Due to the higher efficiency of the detonation wave compared to the deflagration wave, in recent years,
Due to the higher efficiency of the detonation wave compared to the deflagration wave, in recent years, attention has been attracted to the use of detonation waves in engines. For this purpose, various engines such as pulse detonation engines and rotating detonation engines are proposed. Because of the better performance of rotating detonation engines, the purpose of this work is investigation of detonation propagation wave inside the rotating detonation engine (RDE) chamber numerically and with a three-dimensional approach. The purpose of the present work is investigation of the propagation of the detonation wave inside the rotating detonation engine (RDE) which has been done numerically by considering three-dimensional approach. For this purpose, Navier-Stokes equations is solved with taking into account energy and species conservation equation for the reacting flow. Because of high computational cost, a one-step global chemical reaction is used. The results of the present study are compared with the results of the Chapman-Jouguet detonation wave. The results show that there is a good agreement between the temperature and wave velocity. Also, according to the simulation results, the structure of the detonation wave was well extracted. After creating the initial condition, the detonation wave is created and starts moving at a certain speed. In the following, the performance parameters of the present chamber are examined in order to be used in turbine engines, which shows the remarkable performance of this type of chambers.

کلیدواژه‌ها [English]

  • Rotating Detonation Engine (RDE)
  • Numerical simulation
  • Hydrogen-air mixture
  • CJ detonation
  1. Y. B. Zeldovich, “To the question of energy use of detonation combustion,” J. ofTechnical Phys., 10, No. 17, 1940, pp. 1453–1461.
  2. D. M. Davidenko, I. Gökalp and A. N. Kudryavtsev, “Numerical Simulation of the Continuous Rotating Hydrogen-Oxygen Detonation with a Detailed Chemical Mechanism,” West-East High Speed Flow F. Conf., No. November, Moscow, Russia, 2007.
  3. G. D. Roy, S. M. Frolov, A. A. Borisov and D. W. Netzer, “Pulse detonation propulsion: Challenges, current status, and future perspective,” Prog. Energy Combust. Sci., 30, No. 6, 2004, pp. 545–672.
  4. F. A. Bykovskii, V. V. Mitrofanov and E. F. Vedernikov, “Continuous detonation combustion of fuel-air mixtures,” Combust. Explos. Shock Waves, 33, No. 3, 1997, pp. 344–353.
  5. F. A. Bykovskii, S. A. Zhdan and E. F. Vedernikov, “Continuous spin detonations,” J. Propuls. Power, 22, No. 6, 2006, pp. 1204–1216.
  6. S. A. Zhdan, A. M. Mardashev and V. V. Mitrofanov, “Calculation of the flow of spin detonation in an annular chamber,” Combust. Explos. Shock Waves, 26, No. 2, 1990, pp. 210–214.
  7. K. Milanowski, J. Kindracki, A. Kobiera and P. Wolanski, “Numerical Simulation of Rotating Detonation in Cylindrical Channel,” 21st ICDERS, Poitiers, France, 2007, pp. 21–24.
  8. F. Falempin, “Continuous Detonation Wave Engine,” Advances on Propulsion Technology for High-Speed Aircraft, Educational Notes RTO-EN-AVT-150, Paper 8, pp. 1-16, 2008, Available from: http://www.rto.nato.int.
  9. Y. T. Shao, M. Liu and J. P. Wang, “Numerical investigation of rotating detonation engine propulsive performance,” Combust. Sci. Technol., 182, No. 11–12, 2010, pp. 1586–1597.
  10. S. A. Schumaker and V. Sankaran, “Numerical investigation of rotating detonation rocket engines,” AIAA Aerosp. Sci. Meet. No. 210059, pp. 1–15, 2010.
  11. S. J. Liu, Z. Y. Lin, W. D. Liu, W. Lin and M. B. Sun, “Experimental and three-dimensional numerical investigations on H2/air continuous rotating detonation wave,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 227, No. 2, 2012, pp. 326–341.
  12. S. Escobar, S. R. Pakalapati, I. Celik, D. Ferguson and P. Strakey, “Numerical investigation of rotating detonation combustion in annular chamber,” in Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Texas, USA, 2013, pp. 1–9.
  13. D. Wu, Y. Liu, Y. Liu and J. Wang, “Numerical investigations of the restabilization of hydrogen-air rotating detonation engines,” Int. J. Hydrogen Energy, 39, No. 28, 2014, pp. 15803–15809.
  14. S. Randall, A. St George, R. Driscoll, V. Anand and E. J. Gutmark, “Numerical and experimental study of heat transfer in a rotating detonation engine,” 53rd AIAA Aerosp. Sci. Meet., No. January, Florida, USA, 2015, pp. 1–12.
  15. Y. Wang and J. Wang, “Effect of equivalence ratio on the velocity of rotating detonation,” Int. J. Hydrogen Energy, 40, No. 25, 2015, pp. 7949–7955.
  16. Y. Liu, Y. Wang, Y. Li, Y. Li and J. Wang, “Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine,” Chinese J. Aeronaut., 28, No. 3, 2015, pp. 669–675.
  17. Y. Wang, “Rotating detonation in a combustor of trapezoidal cross section for the hydrogen-air mixture,” Int. J. Hydrogen Energy, 41, No. 12, 2016, pp. 5605–5616.
  18. V. Anand, A. St. George, R. Driscoll and E. Gutmark, “Investigation of rotating detonation combustor operation with H2-Air mixtures,” Int. J. Hydrogen Energy, 41, No. 2, 2016, pp. 1281–1292.
  19. H. Zhang, W. Liu and S. Liu, “Effects of inner cylinder length on H2/air rotating detonation,” Int. J. Hydrogen Energy, 41, No. 30, 2016, pp. 13281–13293.
  20. J. Braun, B. H. Saracoglu and G. Paniagua, “Unsteady performance of rotating detonation engines with different exhaust nozzles,” J. Propuls. Power, 33, No. 1, 2016, pp. 121–130.
  21. A. Roy and et al., “Development of a three-dimensional transient wall heat transfer model of a rotating detonation combustor,” 54th AIAA Aerosp. Sci. Meet., No. January, Florida, USA, 2016.
  22. S. Eto, N. Tsuboi, K. Takayuki and A. K. Hayashi, “Three-Dimensional Numerical Simulation of a Rotating Detonation Engine: Effects of the Throat of a Converging-Diverging Nozzle on Engine Performance,” Combust. Sci. Technol., 188, No. 11–12, 2016, pp. 2105–2116.
  23. S. Yao, Z. Ma, S. Zhang, M. Luan and J. Wang, “Reinitiation phenomenon in hydrogen-air rotating detonation engine,” Int. J. Hydrogen Energy, 42, No. 47, 2017, pp. 28588–28598.
  24. T. Gaillard, D. Davidenko and F. Dupoirieux, “Numerical simulation of a Rotating Detonation with a realistic injector designed for separate supply of gaseous hydrogen and oxygen,” Acta Astronaut., 141, No. September, 2017, pp. 64–78.
  25. J. Sun, J. Zhou, S. Liu, Z. Lin and W. Lin, “Plume flowfield and propulsive performance analysis of a rotating detonation engine,” Aerosp. Sci. Technol., 81, 2018 pp. 383–393.
  26. Q. Xie, H. Wen, W. Li, Z. Ji, B. Wang and P. Wolanski, “Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition,” Energy, 151, 2018, pp. 408–419.
  27. J. Sun, J. Zhou, S. Liu, Z. Lin and W. Lin, “Effects of air injection throat width on a non-premixed rotating detonation engine,” Acta Astronaut., 159, pp. 189–198, 2019.
  28. J. Sun, J. Zhou, S. Liu and Z. Lin, “Interaction between rotating detonation wave propagation and reactant mixing,” Acta Astronaut., 164, No. July, 2019, pp. 197–203.
  29. J. Sun, J. Zhou, S. Liu, Z. Lin and W. Lin, “Numerical investigation of a non-premixed hollow rotating detonation engine,” Int. J. Hydrogen Energy, 44, No. 31, 2019, pp. 17084–17094.
  30. S. Dehghan-Nezhad, M. Fahim and M. Farshchi, “Experimental Study of Continuous H2/Air Rotating Detonations,” Combust. Sci. Technol., 01, 2020, pp. 1–15.
  31. S. A. Zhdan, F. A. Bykovskii and E. F. Vedernikov, “Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture,” Combust. Explos. Shock Waves, 43, No. 4, 2007, pp. 449–459.
  32. J. Sun, J. Zhou, S. Liu, Z. Lin and J. Cai, “Effects of injection nozzle exit width on rotating detonation engine,” Acta Astronaut., 140, No. August, 2017, pp. 388–401.
  33. J. Sun, J. Zhou, S. Liu and Z. Lin, “Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions,” Acta Astronaut., 152, No. August, 2018, pp. 630–638.
  34. F. Ma, J. Y. Choi and V. Yang, “Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines,” AIAA Pap., 21, No. 3, 2004, pp. 9677–9698.
  35. D. Ingram, B. Jiang and D. Causon, “On the role of turbulence in detonation induced by Mach stem reflection,” Shock Waves, 8, No. 6, 1998, pp. 327–336.
  36. D. A. Kessler, V. N. Gamezo and E. S. Oran, “Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems,” Combust. Flame, 157, No. 11, 2010, pp. 2063–2077.
  37. L. Massa, M. Chauhan and F. K. Lu, “Numerical study of detonation-turbulence interaction,” 49th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., No. January, Florida, USA, 2011, pp. 1-27.
  38. J. Li, Z. Zhao, A. Kazakov and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet., 36, No. 10, 2004, pp. 566–575.
  39. J. M. Weiss, “Calculation of reacting flowfields involving stiff chemical kinetics,” 14th Comput. Fluid Dyn. Conf., No. C, Florida, USA, 1999, pp. 997–1004.
  40. C. Morley, “A Chemical Equilibrium Program for Windows (Gaseq).” [Online]. Available: http://www.gaseq.co.uk/, Accessed 25 sep 2020.
  41. J. Li, Z. Zhao, A. Kazakov and D. Frederick, “An Updated Comprehensive Kinetic Model for H2 Combustion,” Int. J. of Chemical Kinetics, 36, 2004, pp. 566-575.
  42. G. Genta, Propulsion for Interstellar Space Exploration, Vol. 11, No. C, Elsevier Masson SAS, Torino, Italy, 2001.