گازسازی سوخت نفتی سنگین در یک گازساز جریان حامل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی هوافضا-پیشرانش، دانشگاه خواجه نصیرالدین طوسی

2 دانشگاه علم و صنعت ایران-دانشکده مهندسی مکانیک

3 مهندسی هوافضا، دانشگاه خواجه نصیرالدین طوسی

چکیده

این مقاله به بررسی گازسازی مازوت پالایشگاه تهران با عامل گازکننده هوا می‌پردازد. در ابتدا گازسازی مازوت با رویکرد ترمودینامیکی تعادلی مدل‌سازی شده و سپس به صورت تجربی، عملکرد دمایی یک گازساز جریان‌حامل مطالعه شده است. بدین منظور یک مجموعه گازسازی سوخت نفتی سنگین با ظرفیت 7 کیلوگرم بر ساعت طراحی و ساخته شد. مشخصات فیزیکی-شیمیایی این سوخت نفتی سنگین از طریق آزمایشگاهی تعیین گردید. در یک مطالعه پارامتریک به کمک مدل تعادلی در نرم‌افزار Aspen plus برای شرایط پایدار، اثر نسبت هم‌ارزی بر شاخص‌های عملکردی در گازسازی شامل ترکیبات گاز سنتزی، ارزش حرارتی و دمای گازسازی بررسی شد. توزیع درجه حرارت درون گازساز و مصرف کربن جامد سوخت نفتی سنگین، عوامل موثری در تولید گاز سنتزی و عملکرد بهینه گازسازی می‌باشند. در مطالعه تجربی، دمای گازسازی در نقاط مختلف گازساز اندازه‌گیری شده است. نتایج مدل‌سازی نشان می‌دهند که مقادیر CO، H2 و HHV در نسبت هم‌ارزی برابر 39/0 بیشینه بوده که منطبق با مصرف کامل کربن جامد است. با افزایش نسبت هم‌ارزی، دمای گازسازی زیاد شده که این منطبق بر نتایج تجربی نیز می‌باشد. مقایسه نتایج مدل‌سازی و تجربی نشان می‌دهد که ضمن هماهنگی روند تغییرات دمای گازسازی، اختلاف دماهای تجربی و مدل‌سازی با افزایش نسبت هم‌ارزی کاسته می‌شود؛ همچنین پس از یک فاصله کوتاه از نوک انژکتور، درجه حرارت در طول گازساز با نرخ ثابتی کاهش می‌یابد. در نهایت، به منظور عملکرد بهینه گازسازی سوخت نفتی سنگین، یک تناسب بین طول گازساز و نسبت هم‌ارزی بر اساس پیشرفت یکی از واکنش‌های اساسی در گازسازی ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Gasification of a heavy fuel oil in an entrained flow gasifier

نویسندگان [English]

  • Hamidreza FarshiFasih 1
  • Hojat Ghasseim 2
  • Hasan Karimi MazraeShahi 3
1 Faculty of Aerospace Engineering, K. N. Toosi University of Technology
2 School of Mechanical Engineering, Iran University of Science and Technology
3 Faculty of Aerospace Engineering, K. N. Toosi University of Technology
چکیده [English]

In this paper, air gasification of Tehran’s refinery Mazut is investigated. First, Mazut gasification is modeled by the equilibrium method and then, the thermal operating of an entrained flow gasifier is studied experimentally. An entrained flow gasifier is designed and manufactured for 7 kg/h flow rate of heavy fuel oil. The physical/chemical properties of this heavy fuel oil are determined via standard laboratory experiments. In Aspen plus, a parametric study is conducted by the equilibrium model in order to investigate the effects of equivalence ratio on syngas composition, gasification temperature, and higher heating value for the steady-state condition. Temperature distribution along the gasifier and the solid carbon consumption are effective parameters on syngas composition and gasification performance. In an experiment, the gasification temperature is measured at different locations of a gasifier. The modeling results show that the values of H2, CO, and HHV have a maximum which is accompanied with complete consumption of solid carbon at equivalence ratio 0.39. By increasing equivalence ratio, gasification temperature increases which are supported by experimental results. The comparison of modeling and experimental result shows that difference between model and experimental temperature increases by increasing equivalence ratio. Also, after a short distance from the injector, the temperature is decreased along the gasifier with a constant rate. Finally, in order to provide the optimum gasification operation, the proportion between an appropriate gasifier length and operating equivalence ratio is presented based on one of the gasification reaction.

کلیدواژه‌ها [English]

  • heavy fuel oil
  • equivalence ratio
  • temperature distribution
  • syngas composition
  • gasifier length
  1. M. S. Rana, V. Samano, J. Ancheyta and J. A. I. Diaz, “A review of recent advances on process technologies for upgrading of heavy oils and residua,” Fuel, 86, 2007, pp. 16–31.
  2. Macmillan, Residual fuels – Macmillan encyclopedia of energy, New York, Macmillan Reference, 2001.
  3. www.marnets.com, Products Specification Sheet, Russian MAZUT100-75 Oil, Marnets Global Incorporated.
  4. S. M. Beheshti, H. Ghassemi and R. Shahsavan-Markadeh, “A Comprehensive Study on Gasification of Petroleum Wastes Based on a Mathematical Model,” Petroleum Science and Technology, 32, 2014, pp. 2674–2681.
  5. S. M. Beheshti, H. Ghassemi and R. Shahsavan-Markadeh, “Modeling Steam Gasification of Orimulsion in the Presence of KOH: A Strategy for High-Yield Hydrogen Production,” Petroleum Science and Technology, 33, 2015, pp. 218–225.
  6. H. M. Shim, S. Y. Jung, H. Y. Wang and H. T. Kim, “The comparison study on the operating condition of gasification power plant with various feedstocks,” Korean J. Chem. Eng., 26, No. 2, 2009, pp. 324–331.
  7. H. A. Reyhani, M. Meratizaman, A. Ebrahimi, O. Pourali and M. Amidpour, “Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated Syngas from heavy fuel oil gasification,” energy, 107, 2016, pp. 141–164.
  8. C. Higman and M. V. D. Burgt, Gasification, USA, Elsevier, 2008.
  9. J. G. Speight, Gasification of Unconventional Feedstocks, USA, Elsevier Inc. Gulf Professional Publishing is an imprint of Elsevier, 2014.
  10. J. Ancheyta, Modeling of processes and reactors for upgrading of heavy petroleum. In: Chemical Industries, J. G. Speight (Ed.). Boca Raton, FL: CRC Press, 2013.
  11. H. Wiinikka, A. C. Johansson, J. Wennebro, P. Carlsson and O. G. W. Öhrman, “Evaluation of black liquor gasification intended for synthetic fuel or power production,” Fuel Processing Technology, 139, 2015, pp. 216–225.
  12. M. Vaezi, M. Passandideh-Fard, M. Moghiman and M. Charmchi, “Gasification of heavy fuel oils: A thermochemical equilibrium approach,” Fuel, 90, 2011, pp. 878–885.
  13. H. Ghassemi, S. M. Beheshti and R. Shahsavan-Markadeh, “Mathematical modeling of extra-heavy oil gasification at different fuel water contents,” Fuel, 162, 2015, pp. 258–263.
  14. Kh. M. Kadiev, A. M. Gyulmaliev, M. Ya. Shpirt and S. N. Khadzhiev, “Thermodynamic Analysis of the Gasification Product Compositionof Vacuum Residuum from the Hydroconversionof Heavy Crude Fractions Oil,” Solid Fuel Chemistry, 45, 2011, pp. 12–24.
  15. A. Darmawan, F. Hardi, K. Yoshikawa, M. Aziz and K. Tokimatsu, “Enhanced process Integration of entrained flow gasification and combined cycle: modeling and simulation using Aspen Plus,” Energy Procedia, 105, 2017, pp. 303–308.
  16. Y. C. Choi, J. G. Lee, S. J. Yoon and M. H. Park, “Experimental and theoretical study on the characteristics of vacuum residue gasification in an entrained-flow gasifier,” Korean J. Chem. Eng., 24, No. 1, 2007, pp. 60–66.
  17. S. H. Lee, S. J. Yoon, H. W. Ra, Y. I. Son, J. C. Hong and J. G. Lee, “Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier,” Energy, 35, 2010, pp. 3239–3244.
  18. P. Carlsson, H. Wiinikka, M. Marklund, C. Grönberg, E. Pettersson, M. Lidman and R Gebart, “Experimental investigation of an industrial scale black liquor gasifier. 1. The effect of reactor operation parameters on product gas composition,” Fuel, 89, 2010, pp. 4025–4034.
  19. www.niopdc.ir, National Iranian Oil Refning and Distribution Company, Statics of petroleum products consumption, Tehran, Iran, 2017. (In Persian)
  20. A. K. Samimi, H. Berijanian, G. Karimi and M. Z. Abianeh, “Selection of best upgrading process for Iran’s heavy residue oil,” FarayandNo, 41, 2013, pp. 81–98. (In Persian)
  21. M. Pasandidefard, M. Vaezi and M. Moghiman, “Investigation of a replacing manner for using heavy fuels: gasification instead of combustion,” Sixth national energy congress, 98-F-EEF-228, Tehran, Iran, June 2007. (In Persian)
  22. M. Parvini and D. Rashtchian, “Clean power generation from Refinery heavy residue by gasification,” energy and fuel national congress, Tehran, Iran, 2008. (In Persian)     
  23. M. Ashizawa, S. Hara, K. Kidoguchi and J. Inumaru, “Gasification characteristics of extra-heavy oil in a research-scale gasifier,” Energy, 30, 2005, pp. 2194–2205.
  24. H. Ghassemi and R. Shahsavan-Markadeh, “Effects of various operational parameters on biomass gasification process; a modified equilibrium model,” Energy Conversion and Management, 79, 2014, pp. 18–24.
  25. H. Ghassemi, S. M. Mostafavi and R. Shahsavan-Markadeh, “Modeling of High-Ash Coal Gasification in an Entrained-Flow Gasifier and an IGCC Plant,” J. Energy Eng., 04015052, 2016.
  26. K. Xiangdong, Z. Weimin, D. Wenli and Q.Feng, “Three Stage Equilibrium Model for Coal Gasification in EntrainedFlow Gasifiers Based on Aspen Plus,” Chinese Journal of Chemical Engineering, 21, No. 1, 2013, pp. 79–84.
  27. G. Oh, H. W. Ra, S. M. Yoon, T. Y. Mun, M. W. Seo, J. G. Lee and S. J. Yoon, “Gasification of coal water mixture in an entrained-flow gasifier: Effect of air and oxygen mixing ratio,” Applied Thermal Engineering, 129, 2018, pp. 657–664. 
  28. H. Farshifasih, H. Ghassemi and H. Karimi, “Gasification of a heavy fuel oil: a parametric study on energy and exergy analysis for different gasifying agents,” Petroleum Science and Technology, DOI: 10.1080/10916466.2018.1501384.
  29. J. L. Zheng, M. Q. Zhu, J. L. Wen and R. C. Sun, “Gasification of bio-oil: Effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency,” Bioresource Technology, 211, 2016, pp. 164–172.
  30. M. S. B. Khaleghi, R. Shahsavan-Markadeh and H. Ghassemi, “Thermodynamic evaluation of mazut gasification for using in powergeneration,” Petroleum Science and Technology, 34, NO. 6, 2016, pp. 531–538.
  31. X. Gong, W. Lu, X. Guo, Z. Dai, Q. Liang, H. Liu, H. Zhang and B. Guo, “Pilot-scale comparison investigation of different entrained-flow gasification technologies and prediction on industrial-scale gasification performance,” Fuel, 129, 2014, pp. 37–44.
  32. A. Bader, M. Hartwich, A. Richtera and B. Meyer, “Numerical and experimental study of heavy oil gasification in an entrained flow reactor and the impact of the burner concept,” Fuel Processing Technology, 169, 2018, pp. 58–70.
  33. P. Mikaniki, S. M. A. Najafi and H. Ghassemi, “Experimental study of a heavy fuel oil atomization by pressure-swirl injector in the application of entrained flow gasifier,” Chinese Journal of Chemical Engineering, 27, 2019, pp. 765–771.
  34. S. Sreedhara, K. Y. Huh and H. Park, “Numerical investigation for combustion characteristics of vacuum residue (VR) in a test furnace,” Energy, 32, 2007, pp. 1690–1697.
  35. S. Flecka, U. Santo, C. Hotz, T. Jakobs, G. Eckel, M. Mancini, R. Weber and T. Kolb, “Entrained flow gasification Part 1: Gasification of glycol in an atmospheric pressure experimental rig,” Fuel, 217, 2018, pp. 306–319.
  36. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg,
    C. T. Bowman, R. K. Hanson, S. Song S, J. William, C. Gardiner, V. V. Lissianski and Z. Qin, GRI
    mechanism 3.0. Tech. Rep.
    , Sandia National Laboratories, 2000.