شبیه سازی و بهینه‌سازی فرآیند تولید بیودیزل از روغن خوراکی سوخته تحت شرایط سینتیکی مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه سهند تبریز، تبریز، ایران

2 هیات علمی گروه مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه سهند تبریز، تبریز، ایران

چکیده

به­ دلیل مصرف بیش از حد منابع نفتی در کشور­های در حال توسعه، تلاش های زیادی برای ایجاد یک سوخت جایگزین مناسب بر روی سیستم های انرژی و حمل­ونقل فعلی انجام شده است که یکی از انتخاب‌های مناسب بیودیزل است. هدف در این مطالعه، ابتدا، شبیه­ سازی فرایند تولید بیودیزل از روغن مصرف­شده توسط نرم­افزار ASPEN PLUS و سپس بهینه­ سازی این فرایند با درنظرگرفتن شرایط سینتیکی مختلف در مرحله استریفیکاسیون است. به این دلیل که میزان اسیدهای چرب در خوراک فرایند بیشتر از یک درصد وزنی است، فرایند در دو مرحله، شامل مرحله اول استریفیکاسیون و مرحله دوم ترنس‌استریفیکاسیون، انجام می­شود. تابع هدف بهینه ­سازی رسیدن به حداکثر میزان فروش بیودیزل و گلیسرول در مقابل حداقل هزینه­های تولید است. با توجه به نتایج، حالت بهینه زمانی حاصل می­شود که نسبت مولی متانول به روغن برابر 3 انتخاب شود. همچنین، دمای دو راکتور استریفیکاسیون و ترنس‌استریفیکاسیون، از آن جهت که بر میزان تولید بیودیزل و نیز انرژی مصرفی راکتورها تأثیرگذار بود، تأثیر زیادی در تعیین حالت بهینه اقتصادی این فرایند داشت. هزینه تولید برای این فرایند 24/16 میلیون دلار در سال و سود حاصل از آن 93/12 میلیون دلار در سال به­ دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation and optimization of the biodiesel production process from waste cooking oil under different kinetic conditions

نویسندگان [English]

  • Reza Janbarari 1
  • Hesam Ahmadian behrooz 2
1 Chemical Engineering department- Sahand university - Sahand new city - Tabriz - Iran
2 Chemical Engineering faculty - Sahand university - Sahand new city - Tabriz - Iran
چکیده [English]

Due to excessive consumption of oil resources in developing countries, many efforts have been made to create a suitable alternative fuel for current energy and transportation systems, and biodiesel is one of the best choices. The first target in this study was the simulation of the biodiesel production process from waste cooking oils under different kinetic conditions in the estrification stage using ASPEN PLUS software and then the process was optimized. Due to the fact that the feed used in this process contains more than 1% by weight of fatty acids, the process has two successive steps. In the first and second stages the estrification and transestrification process are carried out, respectively. The goal of the optimization study was to achieve the maximum biodiesel and glycerol sales while the manufacturing cost was minimized. The optimal condition was achieved when the methanol to oil molar ratio of 3 was selected. Also, the temperature of the two reactors had a great influence on the optimality of the process, as both the biodiesel production and the energy consumption of the reactors were notably affected. The total manufacturing cost and profit for this process were calculated to be 16.24 and 12.93 million dollars per year, respectivly.

کلیدواژه‌ها [English]

  • Biodiesel
  • Simulation
  • Optimization
  • Esterification
  • Transesterification
  1. G. AntolÃn, “Optimisation of biodiesel production by sunflower oil transesterification,” Bioresour. Technol., 83, No. 2, 2002, pp. 111-114.
  2. W. Körbitz, “Biodiesel production in Europe and North America, an encouraging prospect,” Renew. Energy, 16, No. 1-4, 1999, pp. 1078–1083.
  3. J. M. N. van Kasteren and A. P. Nisworo, “A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification,” Resour. Conserv. Recycl., 50, No. 4, 2007, pp. 442-458.
  4. B. Najafi, “Effect of fatty acid ethyl esters in biodiesel fuel on diesel engine performance,” Journal of Fuel and Combustion, 5, No. 2, 2012, pp. 25-34. (in Persian)
  5. A. Zenouzi and B. Ghobadian, “Effect of the blends of diesel and biodiesel made from waste cooking oil on Compression-Ignition Engine (CI) performance,” Journal of Fuel and Combustion, 1, No. 1, 2008, pp. 53-59. (in Persian)
  6. D. Huang, H. Zhou and L. Lin, “Biodiesel: an alternative to conventional fuel,” Energy Procedia, 16, 2012, pp. 1874-1885.
  7. A. Demirbas, “Political, economic and environmental impacts of biofuels: A review,” Appl. Energy, 86, 2009, pp. S108-S117.
  8. R. Zah and T. F. Ruddy, “International trade in biofuels: an introduction to the special issue,” J. Clean. Prod., 17, 2009, pp. S1-S3.
  9. M. Banchero, R. D. Kusumaningtyas, and G. Gozzelino, “Reactive distillation in the intensification of oleic acid esterification with methanol-A simulation case-study,” J. Ind. Eng. Chem., 20, No. 6, 2014, pp. 4242-4249.
  10. M. Banchero and G. Gozzelino, “Nb2O5-catalyzed kinetics of fatty acids esterification for reactive distillation process simulation,” Chem. Eng. Res. Des., 100, 2015, pp. 292-301.
  11. B. Najafi, S. Faizollahzadeh Ardabili, “Effect of fatty acid ethyl esters in biodiesel on thermo-physical properties,” Journal of Fuel and Combustion, 9, No. 2, 2016, pp. 121-133. (in Persian)
  12. A. West, D. Posarac, and N. Ellis, “Assessment of four biodiesel production processes using HYSYS.Plant,” Bioresour. Technol., 99, No. 14, 2008, pp. 6587-6601.
  13. H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim, and H. V. Lee, “A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils,” Renew. Sustain. Energy Rev., 67, 2017, pp. 1225-1236.
  14. Y. Zhang, “Biodiesel production from waste cooking oil: 1. Process design and technological assessment,” Bioresour. Technol., 89, No. 1, 2003, pp. 1-16.
  15. H. Yun, M. Wang, W. Feng and T. Tan, “Process simulation and energy optimization of the enzyme-catalyzed biodiesel production,” Energy, 54, 2013, pp. 84-96.
  16. S. Sharma and G. P. Rangaiah, “Multi-objective optimization of a bio-diesel production process,” Fuel, 103, 2013, pp. 269-277.
  17. D. S. Patle, S. Sharma, Z. Ahmad and G. P. Rangaiah, “Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil,” Energy Convers. Manag., 85, 2014, pp. 361-372.
  18. R. D. O’Brien, Fats and Oils: Formulating and Processing for Applications, 3rd Ed., Boca Raton, CRC Press, 2009.
  19. S. Jain, M. P. Sharma and S. Rajvanshi, “Acid base catalyzed transesterification kinetics of waste cooking oil,” Fuel Process. Technol., 92, No. 1, 2011, pp. 32-38.
  20. L. Liu, Z. Liu, G. Tang and W. Tan, “Esterification of free fatty acids in waste cooking oil by heterogeneous catalysts,” Trans. Tianjin Univ., 20, No. 4, 2014, pp. 266-272.
  21. P. Verma and M. P. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” Renew. Sustain. Energy Rev., 62, 2016, pp. 1063-1071.
  22. K. Thiruvengadaravi, J. Nandagopal, V. S. S. Bala, S. D. Kirupha, P. Vijayalakshmi, and S. Sivanesan, “Kinetic study of the esterification of free fatty acids in non-edible Pongamia pinnata oil using acid catalyst,” Indian J. Sci. Technol., 2, No. 12, 2009, pp. 20-24.
  23. L. L. Myint and M. M. El-Halwagi, “Process analysis and optimization of biodiesel production from soybean oil,” Clean Technol. Environ. Policy, 11, No. 3, 2009, pp. 263-276.
  24. E. Sánchez, K. Ojeda, M. El-Halwagi, and V. Kafarov, “Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration,” Chem. Eng. J., No. 176-177, 2011, pp. 211-216.
  25. A. Plus, “Aspen Plus Biodiesel Model (Examples),” Aspen Technol. Camb. MA, 2012.
  26. N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, and T. Yonemoto, “Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst,” Bioresour. Technol., 98, No. 2, 2007, pp. 416-421.
  27. Q. Shu, J. Gao, Z. Nawaz, Y. Liao, D. Wang, and J. Wang, “Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst,” Appl. Energy, 87, No. 8, 2010, pp. 2589-2596.
  28. L. Chen, T. Liu, W. Zhang, X. Chen and J. Wang, “Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion,” Bioresour. Technol., 111, May 2012, pp. 208-214.
  29. S. Morais, S. Couto, A. A. Martins, and T. M. Mata, “Designing eco-efficient biodiesel production processes from waste vegetable oils,” Computer Aided Chemical Engineering, 28, Elsevier, 2010, pp. 253-258.
  30. Y. Liu, E. Lotero, and J. G. Goodwin, “Effect of water on sulfuric acid catalyzed esterification,” J. Mol. Catal. Chem., 245, No. 1-2, 2006, pp. 132-140.
  31. W. D. Seider, J. D. Seader, and D. R. Lewin, Product & Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley & Sons, New York, 2009.
  32. A. Kantama, P. Narataruksa, P. Hunpinyo, and C. Prapainainar, “Techno-economic assessment of a heat-integrated process for hydrogenated renewable diesel production from palm fatty acid distillate,” Biomass Bioenergy, 83, 2015, pp. 448-459.
  33. R. Turton, Ed., Analysis, Synthesis, and Design of Chemical Processes, 4th Ed. Upper Saddle River, NJ, Prentice Hall, 2012.
  34. Y. Zhang, M. Dubé, D. McLean and M. Kates, “Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis,” Bioresour. Technol., 90, No. 3, 2003, pp. 229-240.
  35. Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A. Analysis, Synthesis, and Design of Chemical Processes,Prentice Hall PTR, New Jersey (Chapters 1, 2, 3), 1998.
  36. M. Berrios, J. Siles, M. Martin and A. Martin, “A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil,” Fuel, 86, No. 15, 2007, pp. 2383-2388.