E. James, “Laminar burning velocities of iso-octane-air mixtures-a literature review,” SAE Technical Paper 870170, 1987.
E. Hu and et al., “Measurements of laminar burning velocities and onset of cellular instabilities of methane–hydrogen–air flames at elevated pressures and temperatures,” International Journal of Hydrogen Energy, 34, No. 13, 2009, pp. 5574-5584.
S. Liao and et al., “Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures,” Applied Thermal Engineering, 27, No. 2, 2007, pp. 374-380.
D. Razus, D. Oancea and C. Movileanu, “Burning velocity evaluation from pressure evolution during the early stage of closed-vessel explosions,” Journal of Loss Prevention in The Process Industries, 19, No. 4, 2006, pp. 334-342.
K. Saeed and C. Stone, “Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model,” Combustion and Flame, 139, No. 1, 2004, pp. 152-166.
T. Tahtouh, F. Halter and C. Mounaïm-Rousselle, “Laminar premixed flame characteristics of hydrogen blended iso-octane–air–nitrogen mixtures,” International Journal of Hydrogen Energy, 36, No. 1, 2011, pp. 985-991.
N. Peters, Turbulent combustion, Cambridge university press, Cambridge, United Kingdom, 2004.
X. J. Gu and et al, “Laminar burning velocity and Markstein lengths of methane–air mixtures,” Combustion and Flame, 121, No. 1, pp. 41-58, 2000..
M. Metghalchi and J.C. Keck, “Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature,” Combustion and Flame, 48, 1982, pp. 191-210.
S. Mitra, P. Kumar, “Combustion of Methane-Air in a vessel of Constant Volume,” Proceedings of The XVI National conference on I.C Engines and Combustion, New delhi, India, 2000, pp. 480-491.
C. Mandilas and et al., “Effects of hydrogen addition on laminar and turbulent premixed methane and iso-octane–air flames,” Proceedings of the Combustion Institute, 31, No. 1, 2007, pp. 1443-1450.
D. Bradley and et al., “Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa,” Combustion and Flame, 149, No. 1, 2007, pp. 162-172.
S. Jerzembeck and et al., “Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation,” Combustion and Flame, 156, No. 2, 2009, pp. 292-301.
H. Miao and et al., “Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures,” International Journal of Hydrogen Energy, 34, No. 7, 2009, pp. 3145-3155.
E. Abdi Aghdam, S. M. H. A., “Experimental Study of NG-Air Mixtures at Initially Laminar Conditions,” Journal of Mechanical Eng., Autumn and Winter, 41, No. 2 , 2011, pp. 23-30.
E. A. Aghdam, “Wall effect on determination of laminar burning velocity in a constant volume bomb using a quasi-dimensional model,” Applied Mathematical Modelling, 38, No. 24, 2014, pp. 5811-5821.
M. Baloo and et al., “Effect of iso-octane/methane blend on laminar burning velocity and flame instability,” Fuel, 144, 2015, pp. 264-273.
S. Petrakides and et al., “Experimental study on stoichiometric laminar flame velocities and Markstein lengths of methane and PRF95 dual fuels,” Fuel, 182, 2016, pp. 721-731.
M. Baloo and et al., “Effects of pressure and temperature on laminar burning velocity and flame instability of iso-octane/methane fuel blend,” Fuel, 170, 2016, pp. 235-244.
G. Broustail and et al., “Experimental determination of laminar burning velocity for butanol/iso-octane and ethanol/iso-octane blends for different initial pressures,” Fuel, 106, 2013, pp. 310-317.
E. Varea and et al., Pressure effects on laminar burning velocities and Markstein lengths for isooctane-ethanol-air mixtures,” Proceedings of the Combustion Institute, 34, No. 1, 2013, pp. 735-744.
J. Heywood, Internal combustion engine fundamentals, McGraw-Hill Education, Printed in Singapore, 1988.
A. Prothero, Computing with thermochemical data, Combustion and Flame, 13, No. 4, 1969, pp. 399-408.
R. E. Sonntag and et al., Fundamentals of Thermodynamics, Wiley, New York, 2003.
S. Liao and et al., “Measurements of Markstein numbers and laminar burning velocities for liquefied petroleum gas-air mixtures,” Fuel, 83, No. 10, 2004, pp. 1281-1288.
N. Hinton, R. Stone and R. Cracknell, “Laminar burning velocity measurements in constant volume vessels-reconciliation of flame front imaging and pressure rise methods,” Fuel, 211, 2018, pp. 446-457.
N. Hinton and et al., “Aqueous ethanol laminar burning velocity measurements using constant volume bomb methods,” Fuel, 214, 2018, pp. 127-134.