بررسی اثرات فشار و دما در شعله متقابل آرام گذر-بحرانی و فرا-بحرانی متان و اکسیژن مایع

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شریف

2 دانشکده هوافضا، دانشگاه صنعتی شریف

چکیده

در مقاله حاضر یک شعله برخورد متقابل آرام متان-اکسیژن در شرایط ترمودینامیکی فرا-بحرانی و گذر-بحرانی مورد بررسی قرار گرفته است. از کد منبع باز Cantera جهت محاسبه میدان جریان و حل سینتیک احتراق استفاده شده است و شرایط معادله حالت، معادله انرژی و خواص انتقال جهت حل جریان گاز واقعی در شرایط ترمودینامیکی گذر-بحرانی و فرا-بحرانی اصلاح شده است. مشخصات ترمودینامیکی مانند ظرفیت حرارت ویژه با اضافه شدن ترم تکمیلی به ترم شرایط ایده آل بازنویسی شده است و معادله حالت نیز برای شرایط گاز واقعی به صورت کیوبیک آورده شده است. با حل میدان جریان در شرایط گذر بحرانی مشاهده می شود که اعمال شرایط گاز واقعی سبب پدیدار شدن شرایط شبه جوشش در میدان جریان می شود در صورتیکه با حل گاز ایده آل این پدیده مشاهده نمی شود. در نهایت مشاهده می شود که شرایط گذر-بحرانی در مقایسه با شرایط فرا-بحرانی، شعله بسیار به اعمال رابطه گاز واقعی حساس تر می باشد. در میدان کسر مخلوط اختلاف عمده ای بین حل گاز واقعی و گاز ایده آل دیده نمی شود که این نتیجه برای حل جریان آشفته بحرانی به روش فلیملت مهم می باشد. در میدان فیزیکی اختلاف بین شرایط گاز واقعی و گاز ایده آل از لحاظ موقعیت و ابعاد شعله برای حالت گذر-بحرانی قابل توجه می باشد. برای شرایط کاملا بحرانی در میدان فیزیکی نیز اختلاف قابل توجهی در شرایط موقعیت شعله رخ نمی دهد.

کلیدواژه‌ها

موضوعات


  1. J. Foster and R. S. Miller,"Fundamentals of high pressure combustion, in: M. Lackner (Ed.), High Pressure Processes In Chemical Engineering,” Process Eng Engineering, Wien, 2010.
  2. G. M. Bianchi, P. Pelloni, F. E. Corcione, L. Allocca and F. Luppino, “Modeling atomization of high-pressure diesel sprays,” J. Eng. Gas Turb. Power, 123, 2001, pp.419–427
  3. W. Mayer and H. Tamura,”Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine,” Journal of Propulsion and Power, 12, 1996, pp. 1137–1147.
  4. C. K. Law, “Combustion physics,” Cambridge University Press, Cambridge, UK, 2006.
  5. F. A. Williams, Combustion theory, 2nd ed., The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1985.
  6. L. Figura and A. Gomez, “Laminar counterflow steady diffusion flames under high pressure (P 6 3 MPa) conditions,” Combustion and Flame, 159, 2012, pp.142–150
  7. J. Juanos, , N. Zong, V. Yang, L. Pons, N. Darabiha and S. Candel, “Counterflow diffusion flames of general fluids: oxygen/hydrogen mixtures,” Combustion and Flame, 154, 2008, pp.319–330.
  8. V. Ricchiuti, R. E. Padilla, S. Karnani and D. Dunn-Rankin, “Cantera simulations of water-laden methane/air nonpremixed counterflow flames,” 8th US National Combustion Meeting, Utah, 2013.
  9. U. Niemann, K. Seshadri and F.A. Williams, “Methane, ethane, and ethylene laminar counterflow diffusion flames at elevated pressures: experimental and computational investigations up to 2.0 MPa,” Combustion and Flame, 161, 2014, pp. 138-146.
  10. G. Ribert, N. Zong, V. Yang, L. Pons, N. Darabiha and S. Candel, “Counterflow diffusion flames of general fluids: oxygen/hydrogen mixtures,” Combustion and Flame, 154, 2008, pp.319–330.
  11. B. A. Williams, “Sensitivity of calculated extinction strain rate to molecular transport formulation in nonpremixed counterflow flames,” Combustion and Flame, 124, 2001, pp. 330–333.
  12. X. Wang, H. Huo and V. Yang, “Counterflow diffusion flames of oxygen and n-alkane hydrocarbons (CH 4 −C 16 H 34) at subcritical and supercritical conditions,” Combustion Science and Technology, 187, 2015, pp. 60-82.
  13. G. Lacaze and J. Oefelein, "A non-premixed combustion model based on flame structure analysis," Combustion and Flame, 159, 2012, pp. 2087–2103.
  14. D. T. Banuti, “Crossing the widom-line-supercritical pseduo-boiling,” Journal of Supercritical Fluids, 98, 2015, pp.12-16.
  15. D. T. Banuti and K. Hannemann, “Effect of injector wall heat flux on cryogenic injection,” AIAA Paper 2010-7139, 2010.
  16. D. T. Banuti, V. Hannemann, K. Hannemann, and B. Weigand, “An effcient multi-fluid-mixing model for real gas reacting flows in liquid propellant rocket engines,” Combustion and Flame, 168, 2016, pp.98-112.
  17. R. J. Kee, J. A. Miller and G. H. Evans, “A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames,” Proceeding of International Symposium of Combustion Institute, 1988, pp.1479–1494.
  18. H. Huo, X. Wang and V. Yang, “A general study of counterflow diffusion flames at subcritical and supercritical conditions: oxygen/hydrogen mixtures,” Combustion and Flame, 161, 2014, pp. 3040-3050.
  19. Cantera Developers (2012). Cantera: Chemical kinetics, Thermodynamics, Transport properties. Available: http://cantera.github.com/docs/sphinx/html/index.html, Accessed 24/03/2018
  20. Soave, “Equation constants from a modified Redlich-Kwong equation of state,” Chemical Engineering Science, 27, 1972, pp. 1197-1203.
  21. P. E. Lapenna, P. P. Ciottoli and F. Creta, “The Effect of Fuel Composition on the Non-premixed Flame Structure of LNG/LOx Mixtures at Supercritical Pressure,” AIAA-Paper 2016-0690.
  22. T, Kim, Y. Kim and S-K. Kim, “Effects of Pressure and Inlet Temperature on Coaxial Gaesous Methane/Liquid Oxygen Turbulent Jet Flame under Transcritical Condtions,” Journal of Supercritical Fluids, 81, 2013, pp. 164-174.
  23. R. Reid, J. Prausnitz and B. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 1987.
  24. E. W. Lemmone, M. l. Huber and M. O. McLinden, “NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, verison 9.1”, National Institute of Standards and Technology, Gaithersburg. 2013.
  25. T. H. Chung, M. Ajlan, L. L. Lee, and K. E. Starling, "Generalized multiparameter correlation for nonpolar and polar fluid transport properties," Industrial & engineering chemistry research, 27, 1988, pp. 671-679.