تأثیر فسفر بر اصلاح زئولیت HZSM-5 سنتز شده با توزیع مختلف آلومینیوم شبکه در واکنش تبدیل کاتالیستی سوخت گاز مایع به اولفین‌های سبک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه تربیت مدرس دانشکده شیمی

چکیده

در این پژوهش، زئولیت­ های HZSM-5 با استفاده از منابع آلومینیوم نیترات و آلومینیوم هیدروکسید و نسبت Si/Al برابر 20 سنتز شد و تاثیر توزیع آلومینیوم روی اصلاح زئولیت HZSM-5 با فسفر در واکنش شکست کاتالیستی سوخت گاز مایع بررسی شد. کاتالیست ­های تهیه­ شده با استفاده از تحلیل­ های طیف­سنجی پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، جذب و دفع نیتروژن (N2-BET)، طیف­ سنجی فلورسانس اشعه ایکس (XRF)، و دفع برنامه ­ریزی ­شده دمایی آمونیاک (NH3-TPD) مشخصه ­یابی شدند. توزیع آلومینیوم شبکه زئولیت HZSM-5 با استفاده از آنالیز XRF و طیف­ سنجی فرابنفش-مرئی بازتابی (DR UV-Vis)، تعیین شد. بیشترین سهم آلومینیوم­ های منفرد برابر 90/6 درصد برای زئولیت سنتز­شده با آلومینیوم نیترات و بیشترین سهم آلومینیوم­ های نزدیک به ­هم، برابر 47/8 درصد برای زئولیت سنتز­شده با آلومینیوم هیدروکسید بوده است. آزمون­های شکست کاتالیستی نشان دادند که پایداری کاتالیستی و بازده اولفین­های سبک در شکست سوخت گاز مایع توسط زئولیت سنتز­شده با آلومینیوم نیترات نسبت به زئولیت سنتز­شده با آلومینیوم هیدروکسید بالاتر بوده است. پس از گذشت 240 دقیقه از انجام واکنش، بازده اولفین سبک برای زئولیت P/HZSM-5 سنتز­شده با آلومینیوم نیترات از49/8 درصد به 41/5 درصد کاهش یافته است. همچنین، نسبت پروپلین به اتیلن، بازده محصولات سنگین C5+، درصد کک تشکیل ­شده و نرخ غیرفعال­ شدن برای P/HZSM-5 سنتز­شده با آلومینیوم نیترات، به­ترتیب، برابر 0/986، 2%، 6% و 21/31% بوده است.

کلیدواژه‌ها

موضوعات


1. E. Aghaei, M. Haghighi, Z. Pazhohniya and S. Aghamohammadi, “one-pot hydrothermal synthesis of nanostructured ZrAPSO-34 powder: Effect of Zr-loading on physicochemical properties and catalytic performance in conversion of methanol to ethylene and propylene,” Microporous and Mesoporous Materials, 226, 2016, pp. 331-343.

2. M. J. Azarhoosh, R. Halladj and S. Askari, “Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir–Hinshelwood–Hougen–Watson mechanism,” Journal of Physics: Condensed Matter, 29, 2017, pp. 425202.

3. S. Asadi, L. Vafi and R. Karimzadeh, “Catalytic cracking of propane over impregnated mesoporous ZSM-5: A strategy to change product distribution by sequential modification,” Microporous and Mesoporous Materials, 255, 2018, pp. 253-260. 

4. A. Alamdari and R. Karimzadeh, “Statistical optimization using central composite design for the oxidative dehydrogenation process of LPG fuel on Fe/HZSM-5 in the presence of external electric field,” Fuel and Combustion Scientific Research Journal, 10, 2017, pp. 93-112 (In Persian).                 

5. L. Vafi and R. Karimzadeh, “LPG catalytic cracking over the modified ZSM-5 by activated carbon and carbon nanotube templates: Synthesis, morphology and performance of catalysts,” Journal of Natural Gas Science and Engineering, 32, 2016, pp. 1-9.

6. R. Khoshbin and R. Karimzadeh, “Synthesis of mesoporous ZSM-5 from rice husk ash with ultrasound assisted alkali-treatment method used in catalytic cracking of light naphtha,” Advanced Powder Technology, 28, 2017, pp. 1888-1897.

7. S. Abbasizadeh and R. Karimzadeh, “Effect of Next-Nearest-Neighbor Aluminum Atoms in the HZSM‑5 Framework Synthesized with Various Aluminum Sources on Liquefied Petroleum Gas Transformation to Light Olefins,” Industrial & Engineering Chemistry Research,  57, 2018, pp. 7783-7794.

8. J. Dedecek, V. Balgová, V. Pashkova, P. Klein and B. Wichterlová, “Synthesis of ZSM-5 zeolites with defined distribution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution,” Chemistry of Materials, 24,  2012, pp. 3231-3239.

9. J. Dědeček, Z. Sobalik and B. Wichterlová, “Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis,” Catalysis Reviews: Science and Engineering, 54, 2012, pp. 135-223.

10. J. Dědeček, D. Kaucký, B. Wichterlová and O. Gonsiorová, “Co2+ ions as probes of Al distribution in the framework of zeolites. ZSM-5 study,” Physical Chemistry Chemical Physics, 4, 2002, pp. 5406-5413.

11. J. Dedecek, D. Kaucky and B. Wichterlova, “Co2+ ion siting in pentasil-containing zeolites, part 3. Co2+ ion sites and their occupation in ZSM-5: a VIS diffuse reflectance spectroscopy study,” Microporous and Mesoporous Materials, 35-36, 2000, pp. 483-494.

12. A. Janda and A. T. Bell, “Effects of Si/Al ratio on the distribution of framework Al and on the rates of alkane monomolecular cracking and dehydrogenation in H-MFI,” Journal of the American Chemical Society, 135, 2013, pp. 19193-19207.

13. S. Qu, G. Liu, F. Meng, L. Wang and X. Zhang, “Catalytic Cracking of Supercritical n-Dodecane over Wall-Coated HZSM-5 with Different Si/Al Ratios,” Energy Fuels, 2011, 25, pp. 2808-2814.

14. N. Xue, X. Chen, L. Nie, X. Guo, W. Ding, Y. Chen, M. Gu and Z. Xie, “Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5,” Journal of catalysis, 248, 2007, pp. 20-28.

15. T. Blasco, A. Corma and J. Martínez-Triguero, “Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition,” Journal of Catalysis, 237, 2006, pp. 267-277.

16. R. Lü, Z. Cao and X. Liu, “Catalytic activity of phosphorus and steam modified HZSM-5 and the theoretical selection of phosphorus grafting model,” Journal of Natural Gas Chemistry, 17, 2008, pp. 142-148.

17. G. Jiang, L. Zhang, Z. Zhao, X. Zhou, A. Duan, C. Xu and J.Gao, “Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins,” Applied Catalysis A: General, 340, 2008, pp. 176-182.

18. V. Pashkova, P. Klein, J. Dedecek, V. Tokarová and B. Wichterlová, “Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework,” Microporous and Mesoporous Materials, 202, 2015, pp. 138-146.

19. L. Vafi and R. Karimzadeh, “Effect of phosphorus on methane production in LPG catalytic cracking over modified-structure ZSM-5,” Journal of Natural Gas Science and Engineering, 27, 2015, pp. 751-756.

20. A. Kalantarifard, A. Ghavaminejad and G. Yang, “High CO2 adsorption on improved ZSM-5 zeolite porous structure modified with ethylenediamine and desorption characteristicswith microwave,” Journal of Material Cycles and Waste Management, 19, 2017, pp. 394-405.

21.  B. Barghi, and R. Karimzadeh, “Modeling of ZnZSM-5 deactivation during liquefied petroleum gas catalytic cracking in the presence of steam,” Reaction Kinetics, Mechanisms and Catalysis, 120, 2017, pp. 753-773.

22. A. S. Al-Dughaither and H. de Lasa, “HZSM-5 zeolites with different SiO2/Al2O3 ratios. Characterization and NH3 desorption kinetics,” Industrial & Engineering Chemistry Research, 53, 2014, pp. 15303-15316.

23. P. Sazama, J. Dedecek, V. Gábová, B. Wichterlová, G. Spoto and S. Bordiga, “Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene,” Journal of Catalysis, 254, 2008, pp. 180-189.

24. S. Abbasizadeh and R. Karimzadeh, “Effects of cobalt in activity reduction of close aluminums in the HZSM-5 framework and its role in enhancing light olefins production in Catalytic cracking of LPG fuel,” Fuel and Combustion Scientific Research Journal, 10, 2017, pp. 41-52 (In Persian).

25. Z. Nawaz, S. Qing, G. Jixian, X. Tang and F. Wei, “Effect of Si/Al ratio on performance of Pt–Sn-based catalyst supported on ZSM-5 zeolite for n-butane conversion to light olefins,” Journal of Industrial and Engineering Chemistry, 16, 2010, pp. 57-62.

26. S. Sang, F. Chang, Z. Liu, C. He, Y. He and L. Xu, “Difference of ZSM-5 zeolites synthesized with various templates,” Catalysis Today, 93, 2004, pp. 729-734.

27. R. Khoshbin and R. Karimzadeh, “The beneficial use of ultrasound in free template synthesis of nanostructured ZSM-5 zeolite from rice husk ash used in catalytic cracking of light naphtha: Effect of irradiation power,” Advanced Powder Technology, 28, 2017, pp. 973-982.

28. W. Ding, Y. Cui, J. Li, Y. Yang and W. Fang, “Promoting effect of dual modification of H-ZSM-5 catalyst by alkali treating and Mg doping on catalytic performances for alkylation of benzene with ethanol to ethylbenzene,” RSC Advances, 4, 2014, pp. 50123-50129.

29. Z. Song, A. Takahashi, I. Nakamura and T. Fujitani, “Phosphorus-modified ZSM-5 for conversion of ethanol to propylene,” Applied Catalysis A: General, 384, 2010, pp. 201-205.

30. L. Lin, C. Qiu, Z. Zhuo, D. Zhang, S. Zhao, H. Wu, Y. Liu and M. He, “Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5,” Journal of Catalysis, 309, 2014, pp. 136-145.

31. S. Zhao, D. Yang, X. Zhang, X. Yao, Y. Liu and M. He, “ZSM-5 with controllable acidity as an efficient catalyst for a highly adjustable propene/ethene ratio in the 1-butene cracking,” Chemical Communications, 52, 2016, pp. 11191-11194.