تعیین توزیع شعاعی دما و سرعت در شعله به وسیله ترموکوپل

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه پیشرانش، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران

2 خیابان ازادی- دانشگاه صنعتی شریف- دانشکده هوافضا

3 واحد احتراق، شرکت مهندسی و ساخت توربین مپنا(توگا)

چکیده

امروزه، استفاده از ترموکوپل با جنس مقاوم و نقطه ذوب بالا به­ عنوان ابزاری کارآمد و ارزان برای اندازه­ گیری دمای گازهای داغ در احتراق استفاده می­شود. اندازه­گیری دما توسط ترموکوپل دارای خطای ذاتی ناشی از اتلاف تابشی و هدایتی است و لازم است این خطا اصلاح شود. در این پژوهش، ابتدا، با استفاده از روش عددی ترموکوپل مدل­سازی  می­ شود و صحت کد اولیه، با مقایسه نتایج پژوهش­ های پیشین، اعتبارسنجی می‌شود‌. سپس، اثر، قطر ترموکوپل و سرعت متوسط جریان بر مقدار خطای ترموکوپل بررسی می ­شود. نتایج نشان می­دهد، با افزایش قطر ترموکوپل از 5/0 به 1 میلی­متر، خطا 50 درصد افزایش یافته و با افزایش سرعت متوسط جریان از 1 به 5 متر بر ثانیه، خطا 41 درصد کاهش می یابد. در مقایسه با داده­ های یک کار تجربی، نتایج مدل­سازی ترموکوپل نشان می­ دهد که بیشینه مقدار خطا برای ترموکوپل 300 و 500 میکرونی در شرایط مورد بررسی به­ ترتیب برابر 30/8 و 39/6 درصد است. در ادامه پژوهش، الگوریتمی به­ منظور محاسبه توزیع شعاعی همزمان دما و سرعت جریان پیشنهاد شده و نتایج بیانگر دقت قابل قبول این الگوریتم برای شرایط جریان با دمای بالاست. نتایج مربوطه نشان می­دهد که خطای الگوریتم 2 درصد است.

کلیدواژه‌ها

موضوعات


  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Vol. 3, Amsterdam, Netherlands, Gordon and Breach Publisher, 1996.
  2. A. H. Khalid and K. Kontis, Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors, 8, No. 9, 2008, pp. 5673-5744.
  3. C. R. Shaddix, Correcting thermocouple measurements for radiation loss: a critical review,” Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, New Mexico, 1999.
  4. G. L. Selman and R. Rushforth, The Stability of Metal-sheathed Platinum Thermocouples, Platinum Metals Review, 15, No. 3, 1971, pp. 82-89.
  5. A. G. Tereshchenko, D. A. Knyaz’kov, P. A. Skovorodko, A. A. Paletsky, and O. P. Korobeinichev, Perturbations of the flame structure due to a thermocouple. I. Experiment, Combustion, Explosion, and Shock Waves, 47, No. 4, 2011, pp. 403-414.
  6. P. A. Skovorodko, A. G. Tereshchenko, A. A. Paletsky, D. A. Knyaz’kov, and O. P. Korobeinichev, Perturbations of the flame structure due to a thermocouple. II. Modeling, Combustion, Explosion, and Shock Waves, 47, No. 4, 2011, pp. 414-426.
  7. D. Bradley and J. K. Matthews,Measurement of High Gas Temperatures with Fine Wire Thermocouple,Journal of Mechanical Engineering Science, 10, No. 4, 1968, pp. 299-305.
  8. A. Sato, K. Hashiba, M. Hastani, S. Sugiyama, and J. Kimura, A correctional calculation method for thermocouple measurements of temperatures in flames, Combustion and Flame, 24, 1975, pp. 35-41.
  9. M. Katsuki , Y. Mizutani and Y. Matsumoto, An improved thermocouple technique for measurement of fluctuating temperatures in flames, Combustion and Flame, 67, 1987, pp. 27-36.
  10. D. Bradley, A. K. C. Lau and M. Missaghi, Response of Compensated Thermocouples to Fluctuating Temperatures: Computer Simulation, Experimental Results and Mathematical Modelling, Combustion Science and Technology, 64, 1989, pp. 119-134.
  11. M. Tagawa and Y. Ohta,Two-thermocouple probe for fluctuating temperature measurement in combustion Rational estimation of mean and fluctuating time constants, Combustion and Flame, 109, 1997, pp. 549-560.
  12. P. C. Hung, G. Irwin, R. Kee, and S. McLoone, Difference equation approach to two-thermocouple sensor characterization in constant velocity flow environments, Review of Scientific Instruments, 76, No. 2, 2005, p. 024902.
  13. G. E. Daniels, Measurement of gas temperature and the radiation compensating thermocouple, Journal of Applied Meteorology, 7, No. 6, 1968, pp. 1026-1035.
  14. D. S. De, Measurement of flame temperature with a multi-element thermocouple, Journal of the Institute of Energy, 54, 1981, pp. 113-16.
  15. F. H. Holderness, J. R. Tilston, and J. J. MacFarlane, Electrical Compensation for Radiation Loss in Thermocouples, National Gas Turbine Establishment, Note No. NT, 1969, p. 758.
  16. S. Brohez, C. Delvosalle, and G. Marlair, A two-thermocouple probe for radiation corrections of measured temperatures in compartment fires, Fire Safety Journal, 39, No. 5, 2004, pp. 399-411.
  17. R. Lemaire and S. Menanteau, Assessment of radiation correction methods for bare bead thermocouples in a combustion environment, International Journal of Thermal Sciences, 122, 2017, pp. 186-200.
  18. V. Hindasageri, R. P. Vedula, S. V. Prabhu, “Thermocouple Error Correction for Measuring the Flame Temperature with Determination of Emissivity And Heat Transfer Coefficient,” Review of Scientific Instruments, 84, No. 2, 2013, p. 024902.
  19.  S. C. Kim, A. Hamins, M. F. Bundy, G. H. Ko and E. L. Johnsson. Analysis of thermocouple behavior in compartment fires, Fire Safety Science, 7, 2007, pp. 136-136.
  20.  S. Krishnan, B. M. Kumfer, W. Wu, J. Li, A. Nehorai and R. L. Axelbaum, “An approach to thermocouple measurements that reduces uncertainties in high-temperature environments,” Energy & Fuels, 29, No. 5, 2015, pp. 3446-3455.
  21.  I. L. Roberts, J. E. R. Coney, B. M. Gibbs, “Estimation of Radiation Losses from Sheathed Thermocouples,” Applied Thermal Engineering, 2011, 31, No. 14-15, pp.  2262-2270.
  22.  Z. Xu, X. Tian and H. Zhao, “Tailor-making thermocouple junction for flame temperature measurement via dynamic transient method,” Proceedings of the Combustion Institute, 36, No. 3, 2017, pp. 4443-4451.
  23. S. C. R. Dennis, J. D. A. Walker and J. D. Hudson, “Heat transfer from a sphere at low Reynolds numbers,” Journal of Fluid Mechanics, 60, No. 2, 1973, pp. 273-283.
  24. T. H. Van der Meer, “Stagnation point heat transfer from turbulent low Reynolds number jets and flame jets,” Experimental Thermal and Fluid Science, 4, No. 1, 1991, pp. 115-126.
  25. C. E. Baukal, Jr. and B. Gebhart, “A review of empirical flame impingement heat transfer correlations,” International Journal of Heat and Fluid Flow, 17, No. 4, 1996, pp. 386-396.
  26. D. Bradley and G. A. Entwistle, “Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600-1450°C,” British Journal of Applied Physics, 12, No. 12, 1961, pp. 708-711.
  27. C. M. Cade, “The thermal emissivity of some materials used in thermionic valve manufacture,” IRE Transactions on Electron Devices, 8, No. 1, 1961, pp. 56-69.
  28. R. W. Powell and R. P. Tye, “The promise of platinum as a high temperature thermal conductivity reference material,” British Journal of Applied Physics, 14, No. 10, 1963, p. 662.
  29. C. Davisson and J. R. Weeks, “The Relation between the Total Thermal Emissive Power of a Metal and its Electrical Resistivity,” Journal of the Optical Society of America, 8, No. 5, 1924, pp. 581-605.
  30. D. Pampaloni, D. Bertini, S. Puggelli, L. Mazzei, and A. Andreini, “Methane swirl-stabilized lean burn flames: assessment of scale-resolving simulations,” Energy Procedia, 126, 2017, pp.  834-841.