بررسی عملکرد بسترهای فلزی غیر نجیب و ارزان قیمت جهت تولید گاز اکسیژن درفرآیند الکترولیز قلیایی آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی فیزیک، دانسکده شیمی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 شیمی کاربردی-دانشکده شیمی-دانشگاه صنعتی اصفهان-اصفهان-ایران

3 گروه شیمی، دانشکده شیمی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

یکی از روشهای عمده تولید گاز اکسیژن با خلوص بالا الکترولیز آب می باشد. در این فرآیند، آب به عناصر سازنده اش یعنی اکسیژن و هیدروژن تجزیه میشود. در این مطالعه از بسترهای مختلف فلزی ارزان قیمت شامل فوم نیکل، ورق استیل، توری نیکل، ورق برنج و ورق مس به عنوان الکترود اکسیژن بهره گرفته شده است. از آزمایشهای الکتروشیمیایی ولتامتری چرخ های، ولتامتری روبش خطی و منحنی تافل نیز جهت بررسی عملکرد الکترودها استفاده شده است. نتایج حاصل از این بررسی نشان داد که فوم نیکل پتانسیل مازاد کمتری را در چگالی جریان های 50 mA cm-2و به خصوص 150 mA cm-2نسبت به دیگر نمونه ها دارد. پتانسیل مازاد فوم نیکل در چگالی جریان mA 442 mV ،50 cm-2و در چگالی جریان mV580 ،150 mA cm-2 می باشد که نسبت به دو نمونه ی توری نیکل و ورق استیل به ترتیب، mV 50و 48 mVپتانسیل مازاد کمتری دارد. علاوه بر این فوم نیکل در شرایط واقعی عملکرد مناسبی داشت به طوری که بازده آن در دماهای 40 ،20و 60درجه سانتیگراد به ترتیب، 59.24 ،61.83و 67.70درصد می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Performance evaluation of non-noble and Inexpensive metal substrates for oxygen production in alkaline electrolysis

نویسندگان [English]

  • Mohammad Zhiani 1
  • afshin mohammadi tamajani 2
  • Fariba Jalili 3
1 Department of chemistry, faculty of chemistry, Isfahan university of technology, Isfahan, Iran
2 Department of chemistry, Isfahan University of Technology, Isfahan, Iran
3 Department of chemistry, Faculty of chemistry, Isfahan university of technology, Isfahan, Iran
چکیده [English]

Water electrolysis is the major method for production of high purity oxygen gas. In this process, water decomposes into its elemental constituents, oxygen and hydrogen gases. In this study, various inexpensive substrates such as nickel foam, stainless steel sheet, nickel grid, brass sheet and copper sheet used as an oxygen electrode. The electrochemical techniques such as cyclic voltammetry and linear sweep voltammetry were used to evaluate the performance of electrodes. The obtained results of this study showed that nickel foam has a lower overpotential in the current density of 50 and especially 150 mA cm-2 than other samples. The overpotential of nickel foam at a current density of 50 and 150 mA cm-2 were, 442 and 580 mV respectively, which is low than two nickel mesh 60 mV and stainless steel sheet 48 mV, have less overpotential. In addition, nickel foam had a good performance in real condition and its cell efficiency at 25, 40 and 60 ° C showed 59.24, 61.83 and 67.70 percent, respectively.

کلیدواژه‌ها [English]

  • water electrolysis
  • oxygen gas
  • nickel foam
  • metal substrates
  1. M. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, "Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis," Int J Eng Adv Technol, 4, No. 3, 2015, pp. 80-93,
  2. B. Mvola and P. Kah, "Effects of shielding gas control: welded joint properties in GMAW process optimization," The International Journal of Advanced Manufacturing Technology, 88, No. 9-12, 2017, pp. 2369-2387.
  3. P. Jin, Z. Jiang, C  Bao, S. Hao, and X. Zhang, "The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace," Resources, Conservation and Recycling, 117, 2015, pp. 58-65.
  4. S. de Jong andet al., "Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production," Biotechnology for Biofuels, 10, No. 1, 2017, pp. 64-82.
  5. D. Harvey, N. W. Pollock, N. Gant, J. Hart, P. Mesley, and S. J. Mitchell, "The duration of two carbon dioxide absorbents in a closed-circuit rebreather diving system,"  Diving and Hyperbaric Medicine, 46, No. 2, 2016, pp. 92-97.
  6. F. S. Mechentel, A. Coates, and B. J. Cantwell, "Small-scale gaseous oxygen hybrd rocket testing for regression rate and combustion efficiency studies," 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017, pp. 4643-4658.
  7. T. Smolinka, Fuels-Hydrogen Production| Water Electrolysis, Amsterdam, Elsevier, 2009.
  8. K. G. dos Santos andet al., "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, 68 , 2017  pp. 563-571.
  9. F. M. Sapountzi, J. M. Gracia, H. O. Fredriksson, and J. H. Niemantsverdriet, "Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas," Progress in Energy and Combustion Science, 58, 2017, pp. 1-35.
  10. M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, and H. Dai, "A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction," Nano Research, 9, No. 1, 2016, pp. 28-46.
  11. X. Li, F. C. Walsh, and D. Pletcher, "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers," Physical Chemistry Chemical Physics, 13, No. 3, 2011, pp. 1162-1167.
  12. F. Perez-Alonso, C. Adan, S. Rojas, M. Pena, and J. Fierro, "Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium," international journal of Hydrogen Energy, 39, No. 10, 2014, pp. 5204-5212.
  13. T. T. Hoang and A. A. Gewirth, "High activity oxygen evolution reaction catalysts from additive-controlled electrodeposited Ni and NiFe films," Acs Catalysis, 6, No. 2, 2016, pp. 1159-1164.
  14. J. C. Conesa, "Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst," The Journal of Physical Chemistry C, 120, No. 34, 2016, pp. 18999-19010.
  15. M. Zhiani and S. Kamali, "Preparation and evaluation of nickel nanoparticles supported on the polyvinylpyrrolidone-graphene composite as a durable electrocatalyst for HER in alkaline media," Electrocatalysis, 7, No. 6, 2016, pp. 466-476.
  16. E. Fabbri, A. Habereder, K. Waltar, R. Kötz, and T. J. Schmidt, "Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction," Catalysis Science & Technology, 4, No. 11, 2014, pp. 3800-3821.
  17. M. Zhiani, F. Jalili, and S. Kamali, "In situ cathode polarization measurement in alkaline anion exchange membrane water electrolyzer equipped with a PdNiFeCo/C-Ceria hydrogen evolution electrocatalyst," International Journal of Hydrogen Energy, 42, No. 43, 2017, pp. 26563-26574.
  18. M. Gong and H. Dai, "A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts," Nano Research, 8, No. 1, 2015, pp. 23-39.
  19. J. Jiang,  A. Zhang, L. Li, and L. Ai, "Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction," Journal of Power Sources, 278, 2015, pp. 445-451.
  20. M. I. Jamesh, "Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media," Journal of Power Sources, 333, 2016, pp. 213-236.
  21. M. Janjua and R. Le Roy, "Electrocatalyst performance in industrial water electrolysers," International Journal of Hydrogen Energy, 10, No. 1, 1985, pp. 11-19.
  22. R. F. Grote and J. T. Hynes, "The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models,"  Journal of Chemical Physics, 73, No. 6, 1980, pp. 2715-2732.
  23. K. A. Connors, Chemical Kinetics: The Study of Reaction Rates In Solution, John Wiley & Sons, New York, VCH, 1990.
  24. A. Pozio, M. De Francesco, Z. Jovanovic, and S. Tosti, "Pd-Ag hydrogen diffusion cathode for alkaline water electrolysers," International Journal of Hydrogen Energy, 36, No. 9, 2011, pp. 5211-5217.
  25. J. Hnát, M. Paidar, J. Schauer, and K. Bouzek, "Polymer anion-selective membrane for electrolytic water splitting: The impact of a liquid electrolyte composition on the process parameters and long-term stability," International Journal of Hydrogen Energy, 39, No. 10, 2014, pp. 4779-4787.
  26. J. Otero andet al., "Sulphonated polyether ether ketone diaphragms used in commercial scale alkaline water electrolysis," Journal of Power Sources, 247, 2014, pp. 967-974.
  27. S. H. Ahn and et al., "Development of a membrane electrode assembly for alkaline water electrolysis by direct electrodeposition of nickel on carbon papers," Applied Catalysis B: Environmental, 154, 2014, pp. 197-205.
  28. D. Aili andet al., "Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis," Journal of Membrane Science, 447, 2013  pp. 424-432.
  29. J. Koponen, Review of Water Electrolysis Technologies and Design of Renewable Hydrogen Production Systems, Master's Thesis, Lappeenranta University of Technology, 2015.