تولید بیوگاز از ویناس نیشکر با استفاده از راکتور بستر گرانولی ثابت (SGBR)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز،، اهواز، ایران

2 مرکز تحقیقات فناوری‌های زیست محیطی دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

چکیده

در این مطالعه، تولید بیوگاز از ویناس با استفاده از سه راکتور SGBR  با حجم یکسان 5/6 لیتر، در سه زمان ‌ماند هیدرولیکی (HRT) 2، 3 و 4 روز، با بارگیری روزانه مواد آلی 86002، 28667 و mgCOD/L.Day 21500 بررسی شد. به­ منظور تأمین دمای 35 میانه راکتور از روش حمام آب، و از محلول NaOH برای بافر استفاده شد. حجم بیوگاز تولیدی با استفاده از روش جابه­جایی آب اندازه­گیری شد. نتایج نشان داد که میزان گاز متان تولیدی در زمان ماند هیدرولیکی 4، 3 و 2 روز پس از 11، 13 و 16 روز به مقدار تقریباً ثابتی رسید. میزان گاز متان تولیدی در زمان ماند هیدرولیکی 2، 3 و 4 روز، به ­ترتیب، 66/6، 16/66 و LSTP/L.day 27/38 به ­ازای هر لیتر ویناس است. باکتری‌های متانوژن و اسیدوژن در pH 5/57، در هر سه زمان ماند هیدرولیکی، پس از گذشت 2 روز، به تعادل رسیدند. به طور میانگین، میزان گاز متان تولیدی نسبت به مواد جامد فرار در زمان ‌ماند هیدرولیکی 2، 3 و 4 روز، به­ترتیب 244، 345 و LCH4/kgvs 434 به­دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biogas production from sugar cane vinasse using a Static Granual Bed Reactor (SGBR)

نویسندگان [English]

  • Mostafa Parsaee 1
  • Mostafa Kiani Deh Kiani 1
  • Afshin Takdastan 2
1 Department of Biosystem Engineering, Shahid chamran University of Ahvaz, Ahvaz, Iran
2 Research Center of Ahvaz JundiShapur University, Ahvaz, Iran
چکیده [English]

In this study, the production of biogas from vinasse by using three SGBR reactors with the same volume of 5.6 liters for three hydraulic retention times (2, 3 and 4 days) and organic loading rates of 86002, 28667 and 21500 mgCOD/L.d was investigated. The water bath method was used to provide the  temperature of  mesophyll reactors at 35, and   NaOH solution was used for buffer. The biogas volume was measured using the water displacement method. The results showed that the methane production was almost constant with HRT of 4, 3, and 2 days after 11, 13, and 16 days, respectively. Methane gas production with HRT of 2, 3, and 4 days was 6.66, 16.66 and 27.38 LCH4(STP)/L.day per liter of vinasse, respectively. For three reactors, methanogen and acidogenic bacteria were in the equilibrium state at pH 5.57 after 2 days. The  amount of methane gas production per volatile solids with the HRT of  2, 3, and 4 days was 244, 345 and 434 m3CH4/gvs, respectively.

کلیدواژه‌ها [English]

  • Vinasse
  • Biogas
  • Methane Gas
  • hydraulic retention time
  • Static Granular Bed Reactor

 

1.   K. Karimi and S. Mirmohamadsadeghi, Principles and Technologies of Biogas Production, Isfahan, Isfahan University of Technology, 2016. (in persian)

2.   A. R. Sepaskhah, “Sustainable bio-ethanol production in relation to water and soil resource in Iran,” Strategic Research Journal of Agricultural Sciences and Natural Resources, 2, 2017, pp. 29-44. (in persian) 

3.   L. Janke, A. F. Leite, K. Batista, W. Silva, M. Nikolausz, M. Nelles and W. Stinner, “Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability,” Bioresource Technology, 217, 2016, pp. 10-20.

4.   G. Markou, M. Brule, A. Balafoutis, M. Kornaros, D. Georgakakis and G. Papadakis, “Biogas production from energy crops in northern Greece: economics of electricity generation associated with heat recovery in a greenhouse,” Clean Technologies and Environmental Policy, 4, 2017, pp. 1147-1167.

5.   V. G. de Barros, R. M. Duda, J. de Silva Vantini, W. P. Omori, M. I. T. Ferro, R. A. Oliveira, “Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria,” Bioresource Technology, 244, 2017, pp. 371-381.

6.   I. Syaichurrozi, “Review-biogas technology to treat bioethanol vinasse,” Waste Technology, 1, 2016, pp. 16-23.

7.   L. Janke, A. Leite, H. Wedwitschaka, T. Schmidt, M. Nikolausz and W. Stinner, “Biomethane production integrated to the Brazilian sugarcane industry: The case study of São Paulo state,” Proceedings of the 22nd European Biomass Conference and Exhibition, Hamburg, Germany, June 2014.

8.   B. S. Moraes, M. Zaiat and A. Bonomi, “Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives,” Renewable and Sustainable Energy Reviews, 44, 2016, pp. 888-903.

9.   V. G. de Barros, R. M. Duda and R. A. de Oliveira, “Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge,” Brazilian Journal of Microbiology, 47, 2016, pp. 628-639.

10.           C. E. Rodrigues Reis and B. Hu, “Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization?,” Frontiers in Energy Research, 5, 2017, p. 7.

11. E. I. Espana-Gamboa, J. O. Mijangos-Cortes, G. Hernandez-Zarate, J. A. D. Maldonodo and L. M. Alzate-Gaviria, “Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor,” Biotechnology for biofuels, 5, 2012, p. 82.

12.           C. E. C. Nogueira, S. N. M. de Souza, V. C. Micuanski and R. L. Azevedo, “‌Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil,” Renewable and Sustainable Energy Reviews, 48, 2015, pp. 300-305.

13. B. S. Moraes, T. L. Junqueira, L. G. Pavanello, O. Cavalett, P. E. Mantelatto, A. Bonomi and M. Zaiat, “Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?,” Applied Energy, 113, 2017, pp. 825-835.

14. E. L. Barrera, H. Spanjers, J. Dewulf, O. Romero and E. Rosa, “The sulfur chain in biogas production from sulfate‐rich liquid substrates: a review on dynamic modeling with vinasse as model substrate,” Journal of Chemical Technology and Biotechnology, 88, 2013, pp. 1405-1420.

15. S. N. de Souza, R. F. Santos and G. P, Fracaro, “Potential for the production of biogas in alcohol and sugar cane plants for use in urban buses in the Brazil,” World Renewable Energy Congress-Sweden, Linkoping University Electronic Press, Linkoping, Sweden, May 2011.

16.           M. Fakhari and E. Joudaki, “study of production Vinasse in sugar factories,” Iranian Chemical Engineering, 11, 2012, pp. 86-90. (in persian)

17. S. Belhadj, F. Karouach, H. El Bari and Y. Joute, “The biogas production from mesophilic anaerobic digestion of vinasse,” IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 5, 2013, pp. 72-77.

18.           M. H. Rocha, E. E. S. Lora and O. J. Venturini, “Life cycle analysis of different alternatives for the treatment and disposal of ethanol vinasse,” Proc Int Soc Sugar Cane Technol, 26, 2007, pp. 108-114.

19. K. R. Salomon and E. E. S. Lora, “Estimate of the electric energy generating potential for different sources of biogas in Brazil,” Biomass and Bioenergy, 33, 2009, pp. 1101-1107.

20. M. M. F. Ribas, F. A. Chinalia, E. Pozzi and E. Foresti, “Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR) treating cane vinasse at 55ºC,” Brazilian Archives of Biology and Technology, 52, 2009, pp. 1027-1036.

21. M. Boncz, E. Formagini, Ld, S. Santos, R. Marques and P. Paulo, “Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse,” Water Science and Technology, 66, 2012, pp. 2453-2460.

22.           A. Cabrera-Diaz, I. Pereda-Reyes, D. Oliva-Merencio, R. Lebrero and M. Zaiat, “Anaerobic digestion of sugarcane vinasse through a methanogenic UASB reactor followed by a packed bed reactor,” Applied Biochemistry and Biotechnology, 183, 2017, pp. 1127-1145.

23. A. Cabrera-Diaz, I. Pereda-Reyes, J. Duenas-Moreno, E. Veliz-Lorenzo, M.A. Diaz-Marrero, C.L. Menendez-Gutierrez, D. Oliva-Merencio and M, Zaiat, “Combined treatment of vinasse by an upflow anaerobic filter-reactor and ozonation process,” Brazilian Journal of Chemical Engineering, 33, 2016, pp. 753-762.

24.           C.A. Christofoletti, J. P. Escher, J. E, Correia, J. F. U. Marinho and C. S. Fontanetti, “Sugarcane vinasse: environmental implications of its use,” Waste Management, 33, 2013, pp. 2752-2761.

25. M. Moghadam Nasab, A, Takdastan and S, Sabz Alipour, “Quantitative analysis and characterization of wastewater generated from the alcohol industry and its treatment methods,” The first national conference on technical, economic, social and environmental 555 thousand hectares of land reclamation projects in Khuzestan and Ilam-Iran, Ahvaz, Iran, February 2015. (in persian)

26.           C. de Bazua, M. Cabrero and H. Poggi, “Vinasses biological treatment by anaerobic and aerobic processes: laboratory and pilot-plant tests,” Bioresource Technology, 35, 1991, pp. 87-93.

27.           L. M. Siqueira, E. S. Damiano and E. L. Silva, “Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogas production in fluidized bed reactor,” Journal of Environmental Science and Health, 13, 2013, pp. 1707-1716.

28.           E. Debik and T. Coskun, “Use of the Static Granular Bed Reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling,” Bioresource Technology, 100, 2009, pp. 2777-2782.

29.           S. J. Lim, and T. H. Kim, “Applicability and trends of anaerobic granular sludge treatment processes,” Biomass and Bioenergy, 60, 2014, pp. 189-202.

30. E. I, Ohimain and S. C. Izah, “A review of biogas production from palm oil mill effluents using different configurations of bioreactors,” Renewable and Sustainable Energy Reviews, 70, 2017, pp. 242-252.

31. F. Ehelinger, I. Gueler, F. X. Ball and C. Prevot, “Treatment of lees vinasses of red wine by methanogenic fermentation in presence of tannins and sulphides,” Water Science and Technology, 25 1992, pp. 275-284.

32. K. Aboudi, C. J. Alvarez-Gallego and L. I. Romero-Garcia, “Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: effect of the organic loading rate (OLR) on process performance,” Bioresource Technology, 194, 2015, pp. 283-290.

33. M. H. Geradi, The Microbiology of Anaerobic Digesters, New Jersy, John Wiley & Sons, 2003.

34. I. Syaichurrozi and S. Sumardino, “Predicting kinetic model of biogas production and biodegradability organic materials: biogas production from vinasse at variation of COD/N ratio,” Bioresource Technology, 149, 2013, pp. 390-397.

35. J. Park, Evaluation of tire derived rubber particles as biofilter media and scale-up and design considerations for the static granular bed reactor (SGBR), PhD Thesise, Department of Civil Engineering, Iowa State University, 2008.

36. F. Sanchez Rieraa, P. Cordoba and F. Sineriz, “Use of the UASB reactor for the anaerobic treatment of stillage from sugar cane molasses,” Biotechnology and Bioengineering, 27, 1985, pp. 1710-1716.

37. A. Bories, J. Raynal and F. Bazile, “Anaerobic digestion of high-strength distillery wastewater (cane molasses stillage) in a fixed-film reactor,” Biological Wastes, 23, 1998, pp. 251-267.

38. I. G. Lalov, M. A. Krysteva and J. L. Phelouzat, “Improvement of biogas production from vinasse via covalently immobilized methanogens,” Bioresource Technology, 79, 2001, pp. 83-85.

39. S. Goyal, R. Seth and B. Handa, “Diphasic fixed-film biomethanation of distillery spentwash,” Bioresource Technology, 56, 1996, pp. 239-244.

40. M. Alipour and A. Takdastan, “Feasibility study of vinasse wastewater treatment plant of Razi yeast and Alcohol Company by use of complete mixed anaerobic digester method,” Eighth National Conference on Iranian Sugar Cups, Shahid Chamran University, Ahvaz, Iran, February, 2016. (in persian)

41.           www.isfs.ir, Accessed 18 March 2018.