بررسی عددی و دوبعدی تاثیرات چرخش سوخت روی ساختار و ویژگی‌های زیست‌محیطی یک شعله نفوذی گازی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

چکیده

تاثیر مثبت چرخش واکنشگرهای ورودی به محفظه احتراق بر نرخ اختلاط سوخت و هوا در تحقیقات پیشین به­صورت گسترده­ای مورد بحث قرار گرفته است. اما، این تحقیقات اغلب بر چرخش هوا متمرکز بوده­اند. کار حاضربه ­صورت عددی به بررسی تاثیر چرخش سوخت بر ساختار شعله و نشر آلاینده­های یک شعله نفوذی می­پردازد، در حالی که میزان چرخش هوا ثابت نگه داشته می­شود. نتایج نشان می­دهد که افزایش چرخش سوخت منجربه افزایش نرخ اختلاط سوخت و هوا، افزایش پهنای شعله، افزایش دمای بیشینه شعله، کاهش نشر مونوکسیدکربن و کاهش طول شعله می­شود. اما، منحنی تغییرات میزان نشر اکسیدنیتروژن با چرخش سوخت دارای یک حداقل در چرخش­های میانی است. همچنین، نتایج نشان می­دهد که چرخش هم­جهت سوخت و هوا، در مقایسه با چرخش خلاف ­جهت آن­ها، منجربه نرخ اختلاط سریع­تر، دمای بیشینه بالاتر، نشر اکسیدنیتروژن بیشتر، و در عین حال موجب نشر مونوکسیدکربن کمتر می­شود. در کار حاضر، مشاهده می­شود که چرخش بهینه سوخت برابر با چرخش هوا و هم­جهت با آن است. در این حالت، میزان نشر اکسیدنیتروژن و مونوکسیدکربن، در مقایسه با طرح مرجع (که در آن سوخت بدون چرخش در نظرگرفته می­شود)، به­ترتیب، در حدود 2/15 درصد و 7/92 درصد کاهش می­ یابد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical and Two-Dimensional Study of the Influences of the Swirl of Fuel on the Structure and the Environmental Features of a Gas Diffusion Flame

نویسندگان [English]

  • sina jamalzad
  • javad mahmoudimehr
Faculty of mechanical engineering, University of Guilan, Rasht, Iran
چکیده [English]

The positive influence of the swirl of reactants on the air-fuel mixing has been widely discussed in previous studies. However, they have been mostly focused on the swirl of air. The present work numerically investigates the influences of the swirl of fuel on the structure and the environmental features of a diffusion flame, while the swirl of air is kept constant. The results show that the increase of fuel swirl is associated with the increase of mixing rate, flame width, and flame peak temperature, and the decrease of CO emission and flame length. However, the trend of the variation of NO with fuel swirl number has a minimum somewhere in the middle. The results also illustrate that the co- swirl injection leads to higher mixing rate, peak temperature, emission of NO, and lower emission of CO, as compared to the counter-swirl injection. In this work, the optimum swirl of fuel is observed to have the same value and to be in the same direction as the swirl of air. In this case, the emissions of NO and CO are decreased by 15.2% and 92.7% as compared to the reference design (in which the fuel has no swirl), respectively

کلیدواژه‌ها [English]

  • Diffusion flame
  • Swirl
  • Emission of pollutants
  • Numerical modeling
  • optimization
  1. J. Warnatz, U. Mass and R. W. Dibble, Combustion, 4th Edition, Berlin, Germany, Springer, 2006.
  2. S. R. Turns, an Introduction to Combustion, Second Edition, New York, McGraw Hill, 2000.
  3. F. El-Mahallawy and S. El-Din Habik, Fundamentals and Technology of Combustion, Oxford, UK, Elsevier,2002.
  4. S. Yuasa, “Effect of swirl on the stability of jet diffusion flames,” Combustion and Flame, 66, 1986, pp. 181-192.
  5. Z. Chen, Z. Li, F. Wang, J. Jing, L. Chen and S. Wu, “Gas/particle flow characteristics of a centrally fuel rich swirl coal combustion burner,” Fuel, 87, 2008, pp. 2102-2110.
  6. H. S. Zhen, C. W. Leung and C. S. Cheung, “Thermal and emission characteristics of a turbulent swirling inverse diffusion flame,” International Journal of Heat and Mass Transfer, 53, 2010, pp. 902-909.
  7. O. A. Sharaf, N. N. Mikhael, T. M. Farag and A. K. Abdel-Samed, “Interaction between annulus gaseous fuel and dual swirling air jets for vertical diffusion flame,” Port-Said Engineering Research Journal, 14, 2010, pp. 67-87.
  8. K. Khanafer and S. M. Aithal, “Fluid-dynamic and NOx computation in swirl burners,” International Journal of Heat and Mass Transfer, 54, 2011, pp. 5030-5038.
  9. A. De and S. Acharya, “Parametric study of upstream flame propagation in hydrogen-enriched premixed combustion: effect of swirl, geometry and premixedness,” International Journal of Hydrogen Energy, 37, 2012, pp. 14649-14668.
  10. H. S. Zhen, C. W. Leung, C. S. Cheung and H. B. Li, “Thermal and heat transfer behaviors of an inverse diffusion flame with induced swirl,” Fuel, 103, 2013, pp. 212-219.
  11. Z. Wang, Y. Xu, Y. Lu, Z. Zhou, J. Zhou and K. Cen, “LES investigation of swirl intensity effect on unconfined turbulent swirling premixed flame,” Engineering Thermophysics, 59, 2014, pp. 4550-4558.
  12. L. Xing and J. Li, “Investigation on combustion characteristics and NO formation of methane with swirling and non-swirling high temperature air,” Journal of Thermal Science, 23, 2014, pp. 472-479.
  13. S. Singh and S. Chander,Heat transfer characteristics of dual flame with outer swirling and inner non-swirling flame impinging on a flat surface,” International Journal of Heat and Mass Transfer, 77, 2014, pp. 995-1007.
  14. S. Singh and S. Chander,Heat transfer characteristics of dual swirling flame impinging on a flat surface,” International Journal of Thermal Sciences, 89, 2015, pp. 1-12.
  15. A. Rowhani and S. Tabejamaat, “Experimental study of the effects of swirl and air dilution on biogas non-premixed flame stability,” Journal of Thermal Science, 19, 2015, pp. 2161-2169.
  16. M. T. Parra-Santos, V. Mendoza-Garcia, R. Szasz, A. N. Gutkowski and F. Castro-Ruiz, “Influence of flow swirling on the aerothermodynamic behaviour of flames,” Combustion, Explosion and Shock Waves, 51, 2015, pp. 424-430.
  17. M. Ilbas, S. Karyeyen and I. Yilmaz, “Effect of swirl number on combustion characteristics of Hydrogen-containing fuels in a combustor,” International Journal of Hydrogen Energy, 30, 2016, pp. 1-7.
  18. A. Kotb and H. Saad, “A comparison of the thermal and emission characteristics of co and counter swirl inverse diffusion flame,” International Journal of Thermal Science, 109, 2016, pp. 362-373.
  19. Y. Sung and G. Choi,Non-intrusive optical diagnostics of co- and counter-swirling fames in a dual swirl pulverized coal combustion burner,” Fuel, 174, 2016, pp. 76-88.
  20. T. S. Cheng, J. -Y. Chen and R. W. Pitz, “Raman/LIPF data of temperature and species concentration in swirling Hydrogen jet diffusion flames: conditional analysis and comparison to laminar flamelets,” Combustion and Flame, 186, 2017, pp. 311-324.
  21. C. K. Law, Combustion Physics, Cambridge, Princeton University, 2006.
  22. M. Rasouli and J. Mahmoudimehr, “Minimization of the emission of pollutants along with maximization of radiation from an air-staged natural gas flame,” Modares Mechanical Engineering, 16, 2016, pp. 207-2018. (In Persian)
  23.  T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, Second Edition, USA, Edwards Press, 2005.
  24. http://users.ugent.be/~mvbelleg/flug-12-0.pdf, Ansys Fluent 12.0 User’s Guide, Accessed April 2009.
  25. K. Annamalai and I. K. Puri, Combustion Science and Engineering, CRS Press, Texas A&M University, 2007.
  26. E. P.  Keramida, H. H. Liakos, M. A. Founti, A. G. Boudouvis and N. C.  Markatos, “Radiative heat transfer in natural gas-fired furnaces,” International Journal of Heat and Mass Transfer, 43, 2000, pp. 1801-1809.
  27. D. Garreton, O. Simonin, “Aerodynamics of steady state combustion chambers and furnaces,” ASCF Ercoftac CFD Workshop, Chatou, France, 1994.
  28. F. Hajabdollahi, Z. Hajabdollahi and H. Hajabdollahi, “Soft computing based multi-objective optimization of steam cycle power plant using NSGA-II and ANN,” Soft Computing, 12, 2012, pp. 3648-3659.