مدل‌سازی اثر نانولوله‌های کربن اضافه شده به مخلوط سوخت دیزل-بیودیزل بر عملکرد و آلایندگی یک موتور دیزل با استفاده از شبکه عصبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استاد، مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس تهران،

چکیده

بیودیزل و همچنین برخی نانوکاتالیست‌ها به عنوان افزودنی به سوخت دیزل می‌تواند باعث بهبود عملکرد و کاهش آلاینده-های موتور شود. در تحقیق حاضر، بیودیزل با نسبت 5 و 10 درصد ( B5 و B10) در مخلوط با سوخت دیزل استفاده شد. سپس نانولوله‌های کربن با غلظت 30، 60 و ppm90 به مخلوط سوخت برای ارزیابی عملکرد، آلایندگی و ارتعاش موتور دیزل استفاده گردید. از شبکه‌ عصبی چندلایه با قاعده یادگیری پس انتشار خطا رو به‌ جلو برای مدل‌سازی استفاده گردید. نوع سوخت، دور موتور، چگالی، ویسکوزیته و ارزش حرارتی سوخت، فشار مانیفولد ورودی، مصرف سوخت، دمای گازهای خروجی، اکسیژن موجود در گازهای خروجی، دمای روغن، رطوبت و فشار نسبی هوای محیط به‌عنوان پارامترهای لایه ورودی یا مستقل در نظر گرفته شدند. عملکرد، آلایندگی و ارتعاش موتور به‌عنوان پارامترهای لایه خروجی درنظر گرفته شدند. نتایج نشان داد که مصرف سوخت ویژه موتور و آلایندگی‌های CO و UHC کاهش یافته، در حالی که آلاینده NOx افزایشی بوده است. همچنین، مدل شبکه عصبی با الگوی آموزش پس انتشار خطا با 20-20 نرون در لایه‌های مخفی سیگموئیدی-سیگموئیدی توانایی پیش‌بینی پارامترهای مختلف را با عملکرد و دقت خوبی دارد. مقادیر عددی ضریب رگرسیونی (R) آموزش، ارزیابی و آزمون مدل بهینه شبکه به ترتیب 9999/0، 9985/0 و 9994/0 به‌دست آمد.

کلیدواژه‌ها

موضوعات


1.   A. Taghizadeh-Alisaraei, H. A. Assar, B. Ghobadian, and A. Motevali, “Potential of biofuel production from pistachio waste in Iran,” Renewable and Sustainable Energy Reviews, 72, 2017, pp. 510-522.

2.   A. Taghizadeh-Alisaraei, B. Ghobadian, T. Tavakoli-hashjin, and S. S. Mohtasebi, “Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends,” Fuel, 102, 2012, pp. 414-422.

3.   P. Q. Tan, S. S. Ruan, Z. Y. Hu, D. M. Lou, and H. Li, “Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions,” Applied Energy, 113, 2014, pp. 22-31.

4.   L. Jianmin, S. Yupeng, Z. Xiaoming, X. Shiyong, and D. Lijun, “Procedia Engineering Fuel Injection System Fault Diagnosis Based on Cylinder Head Vibration Signal,” Procedia Engineering, 16, 2011, pp. 218-223.

5.   S. W. Lee, T. Herage, and B. Young, “Emission reduction potential from the combustion of soy methyl ester fuel blended with petroleum distillate fuel,” Fuel, 83, 2004, pp. 1607-1613.

6.   K. Heydari-Maleney, A. Taghizadeh-alisaraei, B. Ghobadian, and A. Abbaszadeh-mayvan, “Analyzing and evaluation of carbon nanotubes additives to diesohol-B2 fuels on performance and emission of diesel engines,” Fuel, 196, 2017, pp. 110-123.

7.   T. Shaafi, K. Sairam, A. Gopinath, G. Kumaresan, and R. Velraj, “Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends-A review,” Renewable and Sustainable Energy Reviews, 49, 2015, pp. 563-573.

8.   I. Gravalos et al., “Detection of fuel type on a spark ignition engine from engine vibration behaviour,” Applied Thermal Engineering, 54, 2013, pp. 171-175.

9.   R. Riazi et al., “Employment of Statistical and Artificial Intelligence Techniques for Prediction of Combustion Dynamics in an Experimental Swirl-stabilized Combustor,” Fuel and Combustion, 9, 2016, pp. 1-22. (in Persian).

10. M. Y. E. Selim, “Pressure-time characteristics in diesel engine fueled with natural gas,” Renewable Energy, 22, 2001, pp. 473-489.

11. E. Uludamar, E. Tosun, and K. Aydın, “Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels,” Fuel, 177, 2016, pp. 326-333.

12. J. Chen, R. Bond Randall, and R. Bond, “Improved automated diagnosis of misfire in internal combustion engines based on simulation models,” Mechanical Systems and Signal Processing, 64-65, 2015, pp. 58–83.

13. Z. H. U. Jian-yuan and J. Y. Zhu, “Detection of cylinder pressure in diesel engines using cylinder head vibration and time series methods,” Journal of Marine Science and Application, 6, 2007, pp. 8-12.

14. C. Xin-yan, L. Hong-fei, J. Province, and J. Province, “Establishment and Analysis of Vibration System based on Time Series Models,” International Conference on Computer Application and System Modeling, North University of China,Taiyuan, China, 2010, pp. 569-572.

15. A. Kirillov, O. Kirillova, and S. Kirillov, “Algorithmic method of analysis of time series data for definition of prognostic parameters of engine fault,” 3rd International Conference on Advanced Computer Control, ICACC 2011, 2011, pp. 138-142.

16. M. K. D. Kiani et al., “Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends,” Energy, 35, 2010, pp. 65-69.

17. B. Ghobadian, H. Rahimi, A. M. Nikbakht, G. Najafi, and T. F. Yusaf, “Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network,” Renewable Energy, 34, 2009, pp. 976-982.

18. M. Canakci, A. Erdil, and E. Arcaklioğlu, “Performance and exhaust emissions of a biodiesel engine,” Applied energy, 83, 2006, pp. 594-605.

19. M. Dehghani et al., “Performance and Exhaust Emissions of a SI Two-stroke Engine with Biolubricants Using Artificial Neural Network,” Energy Procedia, 75, 2015, pp. 3-9.

20. M. Kapusuz, H. Ozcan, and J. A. Yamin, “Research of performance on a spark ignition engine fueled by alcohol-gasoline blends using artificial neural networks,” Applied Thermal Engineering, 91, 2015, pp. 525-5534.

21. H. Mohamed Ismail et al., “Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends,” Applied Energy, 92, 2012, pp. 769-777.

22. S. Javed et al., “Development of ANN model for prediction of performance and emission characteristics of hydrogen dual fueled diesel engine with Jatropha Methyl Ester biodiesel blends,” Journal of Natural Gas Science and Engineering, 26, 2015, pp. 549-557.

23. M. K. D. Kiani, B. Ghobadian, T. Tavakoli, A. M. Nikbakht, and G. Najafi, “Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends,” Energy, 35, 2010, pp. 65-69.

24. A. Uzun, “A parametric study for specific fuel consumption of an intercooled diesel engine using a neural network,” Fuel, 93, 2012, pp. 189-199.

25. T. F. Yusaf, D. R. Buttsworth, K. H. Saleh, and B. F. Yousif, “CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network,” Applied Energy, 87, 2010, pp. 1661-1669.

26. A. Sharma, H. Sharma, P. K. Sahoo, R. K. Tripathi, and L. C. Meher, “ANN Based Modeling of Performance and Emission Characteristics of Diesel Engine Fuelled with Polanga Biodiesel at Different Injection Pressures,” International Energy Journal, 15, 2015, pp. 57-72.

27. Y. Cay, A. Cicek, F. Kara, and S. Sağiroğlu, “Prediction of engine performance for an alternative fuel using artificial neural network,” Applied Thermal Engineering, 37, 2012, pp. 217-225.

28. H. Oğuz, I. Sarıtas, and H. E. Baydan, “Prediction of diesel engine performance using biofuels with artificial neural network,” Expert Systems with Applications, 37, 2010, pp. 6579-6586.

29. S. H. Hosseini et al., “Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine,” Energy, 124, 2017, pp. 543-552.

30. S. H. Hosseini, A. Taghizadeh-Alisaraei, B. Ghobadian, and A. Abbaszadeh-Mayvan, “Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends,” Renewable Energy, 111, 2017, pp. 201-213.

31. A. Taghizadeh-Alisaraei and A. Rezaei-Asl, “The effect of added ethanol to diesel fuel on performance, vibration, combustion and knocking of a CI engine,” Fuel, 185, 2016, pp. 718-733.

32. C. Pachaud, R. Salvetat, and C. Fray, “Crest factor and kurtosis contributions to identify defects inducing periodical impulsive forces,” Mechanical systems and signal processing, 11, 1997, pp. 903-916.

33. Y. Wang, J. Xiang, R. Markert, and M. Liang, “Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines : A review with applications,” Mechanical Systems and Signal Processing, 66, 2015, pp. 679-698.

34. F. De Lorenzo and M. Calabro, “Kurtosis: A Statistical Approach to Identify Defect in Roller Bearings,” 2nd International Conference on Marine Research and Transportation, Ischia, Naples, Italy, 2007, pp. 17-24.

35. B. Najafi, “Effect of Fatty Acid Ethyl Esters in Biodiesel Fuel on Diesel Engine Performance,” Fuel and Combustion, 5, No. 2, 2012, pp. 25-34. (in Persian)

36. G. R. Kannan, R. Karvembu, and R. Anand, “Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel,” Applied Energy, 88, 2011, pp. 3694-3703.

37. M. Zhu, Y. Ma, and D. Zhang, “Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine,” Applied Energy, 91, 2012, pp. 166-172.

38. M. Mirzajanzadeh et al., “A novel soluble nano-catalysts in diesel-biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions,” Fuel, 139, 2015, pp. 374-382.

39. V. Arul Mozhi Selvan, R. B. B. Anand, M. Udayakumar, V. A. M. Selvan, R. B. B. Anand, and M. Udayakumar, “Effect of Cerium Oxide Nanoparticles and Carbon Nanotubes as fuel-borne additives in Diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine,” Fuel, 130, 2014, pp. 160-167.

40. C. S. Aalam and C. G. G. Saravanan, “Effects of nano metal oxide blended Mahua biodiesel on CRDI diesel engine,” Ain Shams Engineering Journal, 8, 2015, pp. 1-8.

41. S. Gumus, H. Ozcan, M. Ozbey, and B. Topaloglu, “Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine,” Fuel, 163, 2016, pp. 80-87.

42. W. M. Yang et al., “Emulsion fuel with novel nano-organic additives for diesel engine application,” Fuel, 104, 2012, pp. 726-731.

43. K. Çelebi, E. Uludamar, E. Tosun, S. Yıldızhan, K. Aydın, and M. Özcanlı, “Experimental and artificial neural network approach of noise and vibration characteristic of an unmodified diesel engine fuelled with conventional diesel, and biodiesel blends with natural gas addition,” Fuel, 197, 2017, pp. 159-173.

44. J. Syed, R. U. Baig, S. Algarni, Y. V. V. S. Murthy, M. Masood, and M. Inamurrahman, “Artificial Neural Network modeling of a hydrogen dual fueled diesel engine characteristics: An experiment approach,” International Journal of Hydrogen Energy, 42, 2017, pp. 14750-14774.

45. H. Soukht Saraee, H. Taghavifar, and S. Jafarmadar, “Experimental and numerical consideration of the effect of CeO2 nanoparticles on diesel engine performance and exhaust emission with the aid of artificial neural network,” Applied Thermal Engineering, 113, 2017, pp. 663-672.

46. J. Rezaei, M. Shahbakhti, B. Bahri, and A. A. Aziz, “Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks,” Applied Energy, 138, 2015, pp. 460-473.