Using a Multi Zone Thermodynamic Model in an HCCI Engine to Predict Exhaust Gas Temperature

Authors

Abstract

Nowadays, Homogenous Charge Compression Ignition (HCCI) engine is a promising idea to achieve the benefits of the gasoline and diesel engines. An important motivation to the tendency of these engines is due to low pollutions and particulate matters that are affected by exhaust gas temperature. Controlling exhaust gas temperature in HCCI engine can lead to controlling pollution. In the present work, the parameters that have the most effect on exhaust gas temperature are specified and the effects of input variables on the mentioned parameters have been investigated using a thermo-kinetic multi zone model. This model has been coupled to a full kinetic mechanism of PRFs (iso octane and normal heptane) as fuel. The model is validated with a large number of experimental data obtained from a Ricardo engine. The exhaust gas temperature depends on combustion timing, burn duration and fuel input energy. Results show that the mentioned parameters are most affected by variables such as octane number, inlet pressure, engine speed and equivalent ratio. At the end three correlations have been presented to predict the combustion timing, burn duration and exhaust gas temperature. These parameters have been compared with experimental data.

Keywords