Experimental Study of Biogas Combustion in a Microturbine Combustion Chamber at Various CO2/NG Ratios

Document Type : Original Article

Authors

1 Aerospace department, Amirkabir university, Tehran, Iran

2 Department of Aerospace Engineering, Amirkabir University of Technology

10.22034/jfnc.2024.437190.1373

Abstract

In this research, complementing previous studies that have focused on flame structure and pollutant levels, the combustion of biogas, composed of methane and carbon dioxide, in a micro gas turbine combustor is experimentally investigated. The influence of the presence of carbon dioxide and variations in its ratio in the fuel mixture on the performance parameters of the combustor and its produced pollutants is examined. The study is conducted at two different thermal powers and constant equivalence ratio for two biogases and compared with natural gas combustion. The results indicate that the carbon dioxide ratio in the fuel significantly affects the turbulent combustion flame structure and performance parameters. Increasing the carbon dioxide ratio in the fuel reduces the combustion rate, causing combustion delay and flame temperature reduction. According to the obtained results, although the addition of carbon dioxide leads to a decrease in the amount of NOx emissions, however, the produced CO in the combustor increases, resulting in an outlet temperature drop and consequently a decrease in the combustor efficiency. Based on these results, it is evident that the utilization of such fuels in combustion systems with swirl burners is feasible. However, measures need to be implemented to mitigate carbon monoxide emissions.
 

Keywords

Main Subjects


[1]           O. norouzi, F. Di Maria, and M. El-Hoz, “A short review of comparative energy, economic and environmental assessment of different biogas-based power generation technologies,” Energy Procedia, vol. 148, pp. 846–851, Aug 2018, doi: 10.1016/j.egypro.2018.08.111.
[2]           C. J. Mordaunt and W. C. Pierce, “Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion,” Fuel, vol. 124, pp. 258–268, May 2014. doi: 10.1016/j.fuel.2014.01.097.
[3]           F. M. Quintino, T. P. Trindade, and E. C. Fernandes, “Biogas combustion: Chemiluminescence fingerprint,” Fuel, vol. 231, pp. 328–340, Nov 2018. doi: 10.1016/j.fuel.2018.05.086.
[4]           M. Miltner, A. Makaruk, and M. Harasek, “Review on available biogas upgrading technologies and innovations towards advanced solutions,” J. Clean. Prod., vol. 161, pp. 1329–1337, Sep 2017. doi: 10.1016/j.jclepro.2017.06.045.
[5]           S. Jain, S. Roy, A. Aggarwal, D. Gupta, V. Kumar, and N. Kumar, “Study on the Parameters Influencing Efficiency of Micro-Gas Turbines: A Review,” in ASME 2015 Power Conference, Jun 2015. doi: 10.1115/POWER2015-49417.
[6]           J. Han, L. Ouyang, Y. Xu, R. Zeng, S. Kang, and G. Zhang, “Current status of distributed energy system in China,” Renew. Sustain. Energy Rev., vol. 55, pp. 288–297, Mar 2016. doi: 10.1016/j.rser.2015.10.147.
[7]           T. Sung, S. Kim, and K. C. Kim, “Thermoeconomic analysis of a biogas-fueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea,” Appl. Therm. Eng., vol. 127, pp. 963–974, Dec 2017. doi: 10.1016/j.applthermaleng.2017.08.106.
[8]           S. E. Hosseini, H. Barzegaravval, M. A. Wahid, A. Ganjehkaviri, and M. M. Sies, “Thermodynamic assessment of integrated biogas-based micro-power generation system,” Energy Convers. Manag., vol. 128, pp. 104–119, Nov 2016. doi: 10.1016/j.enconman.2016.09.064.
[9]           M. Fischer and X. Jiang, “An investigation of the chemical kinetics of biogas combustion,” Fuel, vol. 150, pp. 711–720, Jun 2015. doi: 10.1016/j.fuel.2015.01.085.
[10]         K. Lee, H. Kim, P. Park, S. Yang, and Y. Ko, “CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames,” Fuel, vol. 106, pp. 682–689, Apr 2013. doi: 10.1016/j.fuel.2012.12.048.
[11]         J. I. Erete, K. J. Hughes, L. Ma, M. Fairweather, M. Pourkashanian, and A. Williams, “Effect of CO2 dilution on the structure and emissions from turbulent, non-premixed methane–air jet flames,” J. Energy Inst., vol. 90, no. 2, pp. 191–200, Apr 2017. doi: 10.1016/j.joei.2016.02.004.
[12]         H. Mortazavi, Y. Wang, Z. Ma, and Y. Zhang, “The investigation of CO2 effect on the characteristics of a methane diffusion flame,” Exp. Therm. Fluid Sci., vol. 92, pp. 97–102, Apr 2018. doi: 10.1016/j.expthermflusci.2017.11.005.
[13]         D. Han, A. Satija, J. P. Gore, and R. P. Lucht, “Experimental study of CO2 diluted, piloted, turbulent CH4/air premixed flames using high-repetition-rate OH PLIF,” Combust. Flame, vol. 193, pp. 145–156, 2018. doi: 10.1016/j.combustflame. 2018.03.012.
[14]         X. Hu, F. Bai, C. Yu, and F. Yan, “Experimental Study of the Laminar Flame Speeds of the CH 4 /H 2 /CO/CO 2 /N 2 Mixture and Kinetic Simulation in Oxygen-Enriched Air Condition,” ACS Omega, vol. 5, no. 51, pp. 33372–33379, Dec 2020. doi: 10.1021/acsomega.0c05212.
[15]         A. Guessab, A. Aris, M. Cheikh, and T. Baki, “Combustion of Methane and Biogas Fuels in Gas Turbine Can-type Combustor Model,” J. Appl. Fluid Mech., vol. 9, no. 7, pp. 2229–2238, Jul 2016. doi: 10.18869/acadpub.jafm.68.236.24289.
[16]         W. Zeng, H. Ma, Y. Liang, and E. Hu, “Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture,” J. Adv. Res., vol. 6, no. 2, pp. 189–201, Mar 2015. doi: 10.1016/j.jare.2014.01.003.
[17]         Z. L. Wei, C. W. Leung, C. S. Cheung, and Z. H. Huang, “Effects of equivalence ratio, H 2 and CO 2 addition on the heat release characteristics of premixed laminar biogas-hydrogen flame,” Int. J. Hydrogen Energy, vol. 41, no. 15, pp. 6567–6580, Apr 2016. doi: 10.1016/j.ijhydene.2016.01.170.
[18]         S. Aravind, R. K. Gohiya, R. S. Prakash, and R. Sadanandan, “Effects of CO2 dilution on partially premixed CH4-air flames in swirl and bluff body stabilized combustor,” Proc. Combust. Inst., vol. 38, no. 4, pp. 5209–5217, 2021. doi: 10.1016/j.proci.2020.06.153.
[19]         Y. Nada, K. Matsumoto, and S. Noda, “Liftoff heights of turbulent non-premixed flames in co-flows diluted by CO2/N2,” Combust. Flame, vol. 161, no. 11, pp. 2890–2903, Nov 2014. doi: 10.1016/j.combustflame.2014.05.007.
[20]         L. Wang, Z. Liu, S. Chen, C. Zheng, and J. Li, “Physical and Chemical Effects of CO 2 and H 2 O Additives on Counterflow Diffusion Flame Burning Methane,” Energy & Fuels, vol. 27, no. 12, pp. 7602–7611, Dec 2013. doi: 10.1021/ef401559r.
[21]         X. Tian, J. Yang, Y. Gong, Q. Guo, X. Wang, and G. Yu, “Experimental Study on OH*, CH*, and CO 2 * Chemiluminescence Diagnosis of CH 4 /O 2 Diffusion Flame with CO 2 -Diluted Fuel,” ACS Omega, vol. 7, no. 45, pp. 41137–41146, Nov 2022. doi: 10.1021/acsomega.2c04689.
[22]         M. Bastani, S. Tabejamaat, and H. Ashini, “Numerical and experimental study of combustion and emission characteristics of ammonia/methane fuel mixture in micro gas turbine combustor,” Int. J. Hydrogen Energy, vol. 49, pp. 1399–1415, Jan 2024. doi: 10.1016/j.ijhydene.2023.09.319.
[23]         M. V. Heitor and J. H. Whitelaw, “Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor,” Combust. Flame, vol. 64, no. 1, pp. 1–32, Apr 1986. doi: 10.1016/0010-2180(86)90095-7.
[24]         A. H. Lefebvre and D. R. Ballal, Gas turbine combustion: alternative fuels and emissions. CRC press, 2010.
[25]         M. Bastani, S. Tabejamaat, and H. Ashini, “Experimental study of Ammonia-Methane mixture combustion in the micro gas turbine combustor,” Fuel Combust., vol. 15, no. 3, pp. 120–138, 2023.
[26]         M. Nozari, S. Tabejamaat, H. Sadeghizade, and M. Aghayari, “Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor,” Energy, vol. 235, 2021. doi: 10.1016/j.energy.2021.121372.
[27]         Y. Liu, Q. Xue, H. Zuo, X. She, and J. Wang, “Effects of CO2 and N2 dilution on the characteristics and NOX emission of H2/CH4/CO/air partially premixed flame,” Int. J. Hydrogen Energy, vol. 47, no. 35, pp. 15909–15921, Apr 2022. doi: 10.1016/j.ijhydene.2022.03.060.
[28]         Z. CAO and T. ZHU, “Effects of CO2 Dilution on Methane Ignition in Moderate or Intense Low-oxygen Dilution (MILD) Combustion: A Numerical Study,” Chinese J. Chem. Eng., vol. 20, no. 4, pp. 701–709, Aug 2012. doi: 10.1016/S1004-9541(11)60238-3.
[29]         A. Degenève et al., “Scaling relations for the length of coaxial oxy-flames with and without swirl,” Proc. Combust. Inst., vol. 37, no. 4, pp. 4563–4570, 2019. doi: 10.1016/j.proci.2018.06.032.
[30]         Y. Liu, Q. Xue, H. Zuo, F. Yang, X. Peng, and J. Wang, “Effects of CO 2 and N 2 Dilution on the Combustion Characteristics of H 2 /CO Mixture in a Turbulent, Partially Premixed Burner,” ACS Omega, vol. 6, no. 24, pp. 15651–15662, Jun 2021. doi: 10.1021/acsomega.1c00534.
[31]         S. M. Palash, M. A. Kalam, H. H. Masjuki, B. M. Masum, I. M. Rizwanul Fattah, and M. Mofijur, “Impacts of biodiesel combustion on NOx emissions and their reduction approaches,” Renew. Sustain. Energy Rev., vol. 23, pp. 473–490, Jul 2013. doi: 10.1016/j.rser.2013.03.003.
[32]         C. P. Fenimore, “Formation of nitric oxide in premixed hydrocarbon flames,” Symp. Combust., vol. 13, no. 1, pp. 373–380, Jan. 1971, doi: 10.1016/S0082-0784(71)80040-1.
[33]         C. Schluckner, C. Gaber, M. Landfahrer, M. Demuth, and C. Hochenauer, “Fast and accurate CFD-model for NOx emission prediction during oxy-fuel combustion of natural gas using detailed chemical kinetics,” Fuel, vol. 264, p. 116841, Mar 2020. doi: 10.1016/j.fuel.2019.116841.
[34]         C. E. Baukal Jr, Oxygen-enhanced combustion. CRC press, 2013.
[35]         T. F. Guiberti, D. Durox, and T. Schuller, “Flame chemiluminescence from CO2- and N2-diluted laminar CH4/air premixed flames,” Combust. Flame, vol. 181, pp. 110–122, Jul 2017. doi: 10.1016/j.combustflame.2017.01.032.
[36]         S. Sadatakhavi, S. Tabejamaat, M. EiddiAttarZade, B. Kankashvar, and M. Nozari, “Numerical and experimental study of the effects of fuel injection and equivalence ratio in a can micro-combustor at atmospheric condition,” Energy, vol. 225, p. 120166, Jun 2021. doi: 10.1016/j.energy.2021.120166.