تولید توان پایدار از موتور دیزل دوگانه سوز در حضور بیودیزل بیواتانول و بیوگاز: ارزیابی به کمک روش چرخه حیات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه محقق اردبیلی

2 گروه مهندسی بیوسیستم-دانشگاه محقق اردبیلی، اردبیل

10.22034/jfnc.2024.423272.1363

چکیده

انتشارات مضر احتراق سوخت های فسیلی محققان را تشویق می کند تا سوخت های جایگزین مانند بیودیزل را مطالعه کنند. البته آنالیز آلایندگی مشکل اصلی برای انتخاب سوخت مناسب است. بنابراین، در این مطالعه، یک موتور دیزل دوگانه سوز برای رویکردهای ارزیابی عملکرد و چرخه حیات محیطی مورد بررسی قرار گرفته است. علاوه بر این، مخلوطی شامل بیودیزل مشتق از روغن آفتابگردان با افزودنی بیواتانول ۳، ۵ درصد و ۷ درصد و بیوگاز خالص در کسری ۵۰ تا ۸۰ درصد به عنوان سوخت در فرآیند احتراق تهیه می شود. بر این اساس، در این تحقیق هشت نمونه سوخت تهیه و به همراه سوخت دیزل (به عنوان سوخت شاهد) مورد مطالعه قرار گرفته است. تمام مراحل از تولید نهاده تا احتراق نمونه‌های سوخت شامل استخراج روغن از دانه های آفتابگردان، تولید بیودیزل و بیواتانول و تولید گازطبیعی مشتق شده از بیوگاز خالص در ارزیابی چرخه حیات به‌طور جامع، به‌عنوان یک موضوع جذاب و ابتکاری در نظر گرفته می‌شود. این نمونه ها در یک موتور دوگانه سوز تحت احتراق قرار گرفتند. نتایج نشان می دهد که نمونه سوخت B5 و ۳ درصد از افزودنی بیواتانول در عملکرد موتور و آلایندگی اگزوز بهترین ها هستند. علاوه بر این، شرایط بهتری هم در عملکرد موتور و هم در آلاینده‌های اگزوز در حداقل نرخ کسر گازطبیعی (۵۰٪) به دست آمد. ارزیابی چرخه حیات جامع مزرعه تا احتراق نشان می‌دهد که ترکیب سازگار با محیط‌زیست با شاخص‌های عملکرد قابل‌قبول متعلق به B5E7 با ۵۰% کسر گازطبیعی در بار کامل موتور است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sustainable power generation from a dual fuel diesel engine in the presence of biodiesel, bioethanol and biogas: evaluation using the life cycle method

نویسندگان [English]

  • Razieh Pourdarbani 1
  • Ali Mousavi 2
1 University of Mohaghegh Ardabili
2 Biosystem Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

The investigation of alternative fuels, such as biodiesel, have been prompted by the detrimental emissions resulting from the combustion of fossil fuels. Undoubtedly, the primary concern in fuel selection lies in the examination of emissions. Hence, the present study aims to examine the performance and environmental life cycle assessment methodologies of a dual fuel diesel engine. Furthermore, a fuel blend is made by combining biodiesel sourced from sunflower oil with varying concentrations of bioethanol (3%, 5%, and 7%) and pure biogas, with a percentage ranging from 50% to 80%. This fuel blend is intended for use in the combustion process. In this study, a total of eight fuel samples were meticulously produced and subsequently examined, alongside diesel fuel which served as the control fuel. The entire life cycle evaluation encompasses several stages, starting with the manufacturing of inputs to the combustion of fuel samples. This includes the extraction of oil from sunflower seeds, the production of biodiesel and bioethanol, as well as the generation of natural gas produced from pure biogas. These processes are regarded as captivating and pioneering topics within the field. The provided samples underwent combustion within a dual fuel engine. The findings indicate that the B5 fuel sample, when combined with a 3% bioethanol additive, demonstrates superior engine performance and reduced exhaust emissions. Furthermore, enhanced conditions were achieved in terms of engine performance and exhaust emissions when operating at the lowest rate of natural gas fractionation, which was 50%. The findings of a thorough life cycle evaluation, which examines the entire process from farm to combustion, indicate that the blend B5E7, consisting of 50% natural gas portion at maximum engine load, demonstrates both environmental friendliness and appropriate performance characteristics.

کلیدواژه‌ها [English]

  • life cycle assessment
  • bioethanol
  • biodiesel
  • biogas
  • diesel engine
[1] A. Singh and D. Rathore, Biohydrogen production: sustainability of current technology and future perspective. Springer, 2017.
[2] A. Singh, S. Sevda, I. M. Abu Reesh, K. Vanbroekhoven, D. Rathore, and D. Pant, "Biohydrogen production from lignocellulosic biomass: technology and sustainability," Energies, vol. 8, no. 11, pp. 13062-13080, 2015.
[3] S. Faizollahzadeh Ardabili, B. Najafi, S. J. E. P. Shamshirband, and S. Energy, "Fuzzy logic method for the prediction of cetane number using carbon number, double bounds, iodic, and saponification values of biodiesel fuels," vol. 38, no. 2, pp. 584-599, 2019.
[4] S. Faizollahzadeh Ardabili, B. Najafi, S. Shamshirband, B. Minaei Bidgoli, R. C. Deo, and K.-w. Chau, "Computational intelligence approach for modeling hydrogen production: A review," Engineering Applications of Computational Fluid Mechanics, vol. 12, no. 1, pp. 438-458, 2018.
[5] B. Najafi, S. Faizollahzadeh Ardabili, S. Shamshirband, K.-w. Chau, and T. J. E. A. o. C. F. M. Rabczuk, "Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production," vol. 12, no. 1, pp. 611-624, 2018.
[6] H. Hosseinzadeh-Bandbafha, Sh. Rafiee, P. Mohammadi, B. Ghobadian, S. Shiung Lam, M. Tabatabaei and M. Aghbashlo, "Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends," Energy Conversion Management, vol. 241, p. 114300, 2021.
[7] M. Mortaza, B. Najafi, and S. J. J. o. E. S. S. Faizollahzadeh Ardabili, "Production of biodiesel with waste cooking oil from a life cycle assessment perspective," vol. 8, no. 3, pp. 6962-6967, 2023.
[8] T. Ramesh, A. Sathiyagnanam, M. V. D. Poures, and P. Murugan, "A Comprehensive Study on the Effect of Dimethyl Carbonate Oxygenate and EGR on Emission Reduction, Combustion Analysis, and Performance Enhancement of a CRDI Diesel Engine Using a Blend of Diesel and Prosopis juliflora Biodiesel," International Journal of Chemical Engineering, vol. 2022, 2022.
[9] D. Rathore R. Dheeraj, S. Sevda, Sh. Prasad, V. Venkatramanan, A. Kumar Chandel, R. Kataki, S. Bhadra, V. Channashettar, N. Bora, and Anoop Singh, "Bioengineering to Accelerate Biodiesel Production for a Sustainable Biorefinery," vol. 9, no. 11, p. 618, 2022.
[10] B. A. Oni, S. E. Sanni, B. O. Ezurike, and E. E. J. A. E. J. Okoro, "Effect of corrosion rates of preheated Schinzochytrium sp. microalgae biodiesel on metallic components of a diesel engine," vol. 61, no. 10, pp. 7509-7528, 2022.
[11] H. Esmaeili, "A critical review on the economic aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts," Fuel Processing Technology, vol. 230, p. 107224, 2022.
[12] N. Yilmaz and S. M. Davis, "Diesel blends with high concentrations of biodiesel and n-butanol: Effects on regulated pollutants and polycyclic aromatic hydrocarbons," Process Safety Environmental Protection, vol. 166, pp. 430-439, 2022.
[13] L. Razzaq, M.A. Mujtaba, M.A. Shahbaz, S. Nawaz, H. Mahmood Khan, A. Hussain, U. Ishtiaq, M.A. Kalam, M. Elahi, M. Soudagar, K. Ahmed Ismail, A. Elfasakhany, H. Muhmmad Rizwan, "Effect of biodiesel-dimethyl carbonate blends on engine performance, combustion and emission characteristics" Alexandria Engineering Journal, vol. 61, no. 7, pp. 5111-5121, 2022.
[14] O. Amini, R. Amani, and S. J. I. J. o. E. Ghaderi, "01 Renewable, Non-Renewable Energy Consumption and Energy Security Risk in Iran: An Application of Structural VAR," vol. 25, no. 4, pp. 81-103, 2023.
[15] A. Giocoli, V. Motola, N. Scarlat, N. Pierro, S. J. R. Dipinto, and S. E. Transition, "Techno-economic viability of renewable electricity surplus to green hydrogen and biomethane, for a future sustainable energy system: Hints from Southern Italy," vol. 3, p. 100051, 2023.
[16] S. M. Shaikh and R. L. J. I. J. o. R. E. R. Naik, "Design, Development and Experimental Investigation of H-rotor Vertical Axis Wind Turbine under Low Wind Speeds," vol. 13, no. 1, pp. 49-58, 2023.
[17] Y. Tan, J. Peng, Y. Luo, H. Li, M. Wang, F. Zhang, J. Ji and A Song "Daylight-electrical-thermal coupling model for real-time zero-energy potential analysis of vacuum-photovoltaic glazing," 2023.
[18] M. Aghbashlo, M. Tabatabaei, S. Amid, H. Hosseinzadeh-Bandbafha, B. Khoshnevisan, and G. J. R. E. Kianian, "Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel," vol. 151, pp. 1352-1364, 2020.
[19] B. Chatterjee and D. Mazumder, "Role of stage-separation in the ubiquitous development of anaerobic digestion of organic fraction of municipal solid waste: a critical review," Renewable Sustainable Energy Reviews, vol. 104, pp. 439-469, 2019.
[20] A. Cornejo, I. Barrio, M. Campoy, J. Lázaro, B. J. R. Navarrete, and S. E. Reviews, "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," vol. 79, pp. 1400-1413, 2017.
[21] Y. Wang, H. Maidment, V. Boccolini, and L. Wright, "Life cycle assessment of alternative marine fuels for super yacht," Regional Studies in Marine Science, vol. 55, p. 102525, 2022.
[22] P. A. R. Ramos, I. Tobío-Pérez, J. S. Hernández, R. Piloto-Rodríguez, and S. Pohl, "On the environmental and economic issues associated with the Jatropha curcas shell gasification to heat and electricity for biodiesel production," Afinidad, vol. 79, p. 596.
[23] H. Hosseinzadeh-Bandbafha, F. Nazemi, Z. Khounani, H. Ghanavati, M. Shafiei, K. Karimi, S. Shiung Lam, M. Aghbashlo and M. Tabatabaei., "Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective," Science of The Total Environment, vol. 802, p. 149842, 2022.
[24] C. Ternel, A. Bouter, and J. Melgar, "Life cycle assessment of mid-range passenger cars powered by liquid and gaseous biofuels: Comparison with greenhouse gas emissions of electric vehicles and forecast to 2030," Transportation Research Part D: Transport Environment, vol. 97, p. 102897, 2021.
[25] L. Bilgili, "Comparative assessment of alternative marine fuels in life cycle perspective," Renewable Sustainable Energy Reviews, vol. 144, p. 110985, 2021.
[26] S. F. Ardabili, B. Najafi, M. Aghbashlo, Z. Khounani, and M. Tabatabaei, "Performance and emission analysis of a dual-fuel engine operating on high natural gas substitution rates ignited by aqueous carbon nanoparticles-laden diesel/biodiesel emulsions," Fuel, vol. 294, p. 120246, 2021.
[27] H. Karimmaslak, B. Najafi, S. S. Band, S. Ardabili, F. Haghighat-Shoar, and A. J. E. A. o. C. F. M. Mosavi, "Optimization of performance and emission of compression ignition engine fueled with propylene glycol and biodiesel–diesel blends using artificial intelligence method of ANN-GA-RSM," vol. 15, no. 1, pp. 413-425, 2021.
[28] M. Parsaee, M. K. D. Kiani, K. J. B. Karimi, and bioenergy, "A review of biogas production from sugarcane vinasse," vol. 122, pp. 117-125, 2019.
[29] J. Li, "Land sale venue and economic growth path: Evidence from China's urban land market," Habitat international, vol. 41, pp. 307-313, 2014.
[30] A. Anbalagan, A. Toledo-Cervantes, E. Posadas, E. María Rojo, R. Lebrero, A. González-Sánchez, E. Nehrenheim and R. Muñoz "Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment: evaluation of tubular algal-bacterial photobioreactor," Journal of CO2 Utilization, vol. 21, pp. 353-359, 2017.
[31] T. Al Seadi, D. Rutz, H. Prassl, M. Köttner, T. Finsterwalder, S. Volk and R. Janssen, "Biogas handbook, Teodorita," Esbjerg, Denmark: by University of Southern Denmark Esbjerg, Niels Bohrs Vej, vol. 910, p. 279, 2008.
[32] K. Starr, X. Gabarrell, G. Villalba, L. Talens, and L. Lombardi, "Life cycle assessment of biogas upgrading technologies," Waste management, vol. 32, no. 5, pp. 991-999, 2012.
[33] Y.-W. Jeon and D.-H. Lee, "Gas membranes for CO2/CH4 (biogas) separation: A review," Environmental Engineering Science, vol. 32, no. 2, pp. 71-85, 2015.
[34] P. Collet, A. Hélias, L. Lardon, M. Ras, R.-A. Goy, and J.-P. Steyer, "Life-cycle assessment of microalgae culture coupled to biogas production," Bioresource technology, vol. 102, no. 1, pp. 207-214, 2011.
[35] S. Park and S. Song, "Model-based multi-objective Pareto optimization of the BSFC and NOx emission of a dual-fuel engine using a variable valve strategy," Journal of Natural Gas Science and Engineering, vol. 39, pp. 161-172, 2017.
[36] B. Rahmanian, M. R. Safaei, S. N. Kazi, G. Ahmadi, H. F. Oztop, and K. Vafai, "Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion," Applied thermal engineering, vol. 73, no. 1, pp. 1222-1235, 2014.
[37] A. Carlucci, A. Ficarella, D. Laforgia, and L. Strafella, "Improvement of dual-fuel biodiesel-producer gas engine performance acting on biodiesel injection parameters and strategy," Fuel, vol. 209, pp. 754-768, 2017.
[38] R. Papagiannakis, S. Krishnan, D. Rakopoulos, K. Srinivasan, and C. J. F. Rakopoulos, "A combined experimental and theoretical study of diesel fuel injection timing and gaseous fuel/diesel mass ratio effects on the performance and emissions of natural gas-diesel HDDI engine operating at various loads," vol. 202, pp. 675-687, 2017.
[39] R. Papagiannakis and D. Hountalas, "Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas," Energy conversion and management, vol. 45, no. 18-19, pp. 2971-2987, 2004.
[40] S. Faizollahzadeh Ardabili, "Improving the combustion process of biodiesel using additives," Ph.D. thesis Fundamental, Biosystem Engineering, University of Mohaghegh Ardabili, Ardabil, Iran, 2021.
[41] F. Hashemi, R. Pourdarbani, S. Ardabili, and J. L. J. A. T. A. Hernandez-Hernandez, "Life Cycle Assessment of a Hybrid Self-Power Diesel Engine," vol. 26, no. 1, pp. 17-28, 2023.
[42] A. Hashemi-Nejhad, B. Najafi, S. Ardabili, G. Jafari, and A. J. I. J. o. E. R. Mosavi, "The Effect of Biodiesel, Ethanol, and Water on the Performance and Emissions of a Dual-Fuel Diesel Engine with Natural Gas: Sustainable Energy Production through a Life Cycle Assessment Approach," vol. 2023, 2023.
[43] W. T. França, M. V. Barros, R. Salvador, A. C. de Francisco, M. T. Moreira, and C. M. J. T. I. J. o. L. C. A. Piekarski, "Integrating life cycle assessment and life cycle cost: A review of environmental-economic studies," vol. 26, pp. 244-274, 2021.
[44] E. Akbarian, B. Najafi, M. Jafari, S. Faizollahzadeh Ardabili, S. Shamshirband, and K.-w. Chau, "Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine," Engineering Applications of Computational Fluid Mechanics, vol. 12, no. 1, pp. 517-534, 2018.
[45] A. Hashemi-Nejhad, B. Najafi, S. Ardabili, G. Jafari, and A. Mosavi, "The Effect of Biodiesel, Ethanol, and Water on the Performance and Emissions of a Dual-Fuel Diesel Engine with Natural Gas: Sustainable Energy Production through a Life Cycle Assessment Approach," International Journal of Energy Research, vol. 2023, 2023.
[46] B. Najafi, F. Haghighatshoar, S. Ardabili, S. S. Band, K. W. Chau, and A. Mosavi, "Effects of low-level hydroxy as a gaseous additive on performance and emission characteristics of a dual fuel diesel engine fueled by diesel/biodiesel blends," Engineering Applications of Computational Fluid Mechanics, vol. 15, no. 1, pp. 236-250, 2021.
[47] S. Saravanan, G. Nagarajan, G. L. N. Rao, and S. Sampath, "Theoretical and experimental investigation on effect of injection timing on NOx emission of biodiesel blend," Energy, vol. 66, pp. 216-221, 2014.
[48] S. P. R. Yadav, C. Saravanan, and M. Kannan, "Influence of injection timing on DI diesel engine characteristics fueled with waste transformer oil," Alexandria Engineering Journal, vol. 54, no. 4, pp. 881-888, 2015.
[49] D. Qi, H. Chen, L. Geng, and Y. Bian, "Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine," Renewable energy, vol. 36, no. 4, pp. 1252-1258, 2011.
[50] G. Kannan and R. Anand, "Experimental investigation on diesel engine with diestrol–water micro emulsions," Energy, vol. 36, no. 3, pp. 1680-1687, 2011.
[51] E. Alptekin, "Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine," Energy, vol. 119, pp. 44-52, 2017.