شبیه‌سازی عددی شعله‌های ‌آشفته پیش‌مخلوط با روش ریزشعله کرنش‌یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شریف، تهران، ایران

2 استادیار، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

10.22034/jfnc.2024.421906.1362

چکیده

شبیه­ سازی عددی شعله ­های آشفته با روش ریزشعله­ آرام در شرایط شدت آشفتگی بالا به سادگی میسر نیست. نتایج تجربی و شبیه­سازی عددی مستقیم نشان می­دهد که وارد کردن اثرات کرنش در تولید جداول ریزشعله­ ها می­ تواند دقت مدل­ سازی را به­ صورت قابل توجهی افزایش دهد. به­ طوری­که در این پژوهش با اعمال اثرات کرنش طول شعله نسبت به حالت بدون کرنش افزایش 30 میلی­متری دارد. در این پژوهش روش ریزشعله آرام کرنش یافته در شبیه­ سازی شعله‌های آشفته پیش­مخلوط پیاده ­سازی و مورد ارزیابی قرار گرفته است. برای تولید جداول ریزشعله­ ها از شعله جریان متقابل پیش ­مخلوط استفاده شده است. این جداول با استفاده از دو متغیر پیشرفت واکنش و روش تابع توزیع احتمال پیش ­فرض در حل گر دینامیک سیالات محاسباتی مورد استفاده قرار می­ گیرد. مدل بدست آمده در این پژوهش برای شبیه­ سازی رینولدز-متوسط شعله آشفته یک مشعل بنزن پیلوت­دار مورد استفاده قرار گرفته است. این مشعل از رویکرد نوینی جهت افزایش شدت آشفتگی ورودی بهره می­برد. نتایج نشان می­ دهد که استفاده از روش ریزشعله­ آرام کرنش یافته در مقایسه با ریزشعله کرنش نیافته سرعت انتشار شعله و در نتیجه طول شعله را به مقدار قابل توجهی بهتر پیش‌بینی می­ کند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation of turbulent premixed flames using strained flamelet model

نویسندگان [English]

  • Amirhossein Fashamiha 1
  • Ehsan Rasouli Oskuei 1
  • Mohammad Mahdi Salehi 2
1 Aerospace Engineering Department, Sharif University of Technology
2 Aerospace Engineering Department, Sharif University of Technology, Tehran, Iran
چکیده [English]

Numerical simulation of turbulent flames with laminar flamelet models is not easily possible under high turbulence intensity conditions. Experimental results and direct numerical simulations show that introducing strain effects in the production of flamelet tables can significantly increase the accuracy of modeling. In this work, implementing the strain effects in the model results in 30 mm increase in the flame height relative to the unstrained model. In this work, a strained flamlet model has been implemented and evaluated in the simulation of turbulent premixed flames. The premixed counterflow flame has been used to produce the flamelet tables. These tables are used in the computational fluid dynamics solver using two reaction progress variables and the presumed probability density function method. The model obtained in this research has been used in Reynolds-Averaged simulation of a turbulent piloted premixed flame in a bunsen burner. This burner utilized a novel approach to highly increase the input turbulence intensity. The results show that the strained flamelet model predicts the flame propagation speed and consequently the flame length, significantly better compared to the unstrained flamelet model.
.

کلیدواژه‌ها [English]

  • Combustion
  • Turbulence
  • Premixed flame
  • Laminar flamlet model
  • Strain rate
[1]           B. Fiorina, D. Veynante, and S. Candel, “Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames,” Flow Turbul. Combust., vol. 94, no. 1, pp. 3–42, Jan. 2015, doi: 10.1007/s10494-014-9579-8.
[2]           B. Fiorina and D. Veynante, “MODELING COMBUSTION CHEMISTRY IN LARGE EDDY SIMULATION OF TURBULENT FLAMES,” 2013.
[3]           A. R. Kerstein, W. T. Ashurst, and F. A. Williams, “Field equation for interface propagation in an unsteady homogeneous flow field,” Phys. Rev. A, vol. 37, no. 7, pp. 2728–2731, Apr. 1988, doi: 10.1103/PhysRevA.37.2728.
[4]           C. Dopazo, Ed., Advances in turbulence VIII: proceedings ot the Eighth European Turbulence Conference; held in Barcelona, Spain, June 27 - 30, 2000. Barcelona: CIMNE, 2000.
[5]           D. B. Spalding, “Mixing and chemical reaction in steady confined turbulent flames,” Symp. Int. Combust., vol. 13, no. 1, pp. 649–657, Jan. 1971, doi: 10.1016/S0082-0784(71)80067-X.
[6]           G. Damkoh, “The effect of turbulence on the flame: Velocity in gas mixtures”.
[7]           R. S. Cant and K. N. C. Bray, “Strained laminar flamelet calculations of premixed turbulent combustion in a closed vessel,” Symp. Int. Combust., vol. 22, no. 1, pp. 791–799, Jan. 1989, doi: 10.1016/S0082-0784(89)80088-8.
[8]           N. Peters, “Laminar diffusion flamelet models in non-premixed turbulent combustion,” Prog. Energy Combust. Sci., vol. 10, no. 3, pp. 319–339, Jan. 1984, doi: 10.1016/0360-1285(84)90114-X.
[9]           H. Pitsch, M. Chen, and N. Peters, “Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames,” Symp. Int. Combust., vol. 27, no. 1, pp. 1057–1064, Jan. 1998, doi: 10.1016/S0082-0784(98)80506-7.
[10]         C. D. Pierce and P. Moin, “Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion,” J. Fluid Mech., vol. 504, pp. 73–97, Apr. 2004, doi: 10.1017/S0022112004008213.
[11]         D. Bradley, L. K. Kwa, A. K. C. Lau, M. Missaghi, and S. B. Chin, “Laminar flamelet modeling of recirculating premixed methane and propane-air combustion,” Combust. Flame, vol. 71, no. 2, pp. 109–122, Feb. 1988, doi: 10.1016/0010-2180(88)90001-6.
[12]         O. Gicquel, N. Darabiha, and D. Thévenin, “Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion,” Proc. Combust. Inst., vol. 28, no. 2, pp. 1901–1908, Jan. 2000, doi: 10.1016/S0082-0784(00)80594-9.
[13]         J. A. Van Oijen and L. P. H. De Goey, “Modelling of premixed counterflow flames using the flamelet-generated manifold method,” Combust. Theory Model., vol. 6, no. 3, pp. 463–478, Sep. 2002, doi: 10.1088/1364-7830/6/3/305.
[14]         M. M. Salehi and H. Ataizadeh, Assessment of the progress variable variance modelling on large-eddy simulation of turbulent premixed flames using flamelet-generated manifold model, vol. 14, no. 4, Feb. 2022, doi: 10.22034/jfnc.2022.334445.1311, [in persian].
[15]         B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier, and N. Darabiha, “Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM,” Combust. Theory Model., vol. 7, no. 3, pp. 449–470, Sep. 2003, doi: 10.1088/1364-7830/7/3/301.
[16]         E. Knudsen, H. Kolla, E. R. Hawkes, and H. Pitsch, “LES of a premixed jet flame DNS using a strained flamelet model,” Combust. Flame, vol. 160, no. 12, pp. 2911–2927, Dec. 2013, doi: 10.1016/j.combustflame.2013.06.033.
[17]         Y. Tang and V. Raman, “Large eddy simulation of premixed turbulent combustion using a non-adiabatic, strain-sensitive flamelet approach,” Combust. Flame, vol. 234, p. 111655, Dec. 2021, doi: 10.1016/j.combustflame.2021.111655.
[18]         W. Zhang, S. Karaca, J. Wang, Z. Huang, and J. V. Oijen, “Large eddy simulation of the Cambridge/Sandia stratified flame with flamelet-generated manifolds: Effects of non-unity Lewis numbers and stretch,” Combust. Flame, vol. 227, pp. 106–119, May 2021, doi: 10.1016/j.combustflame.2021.01.004.
[19]         I. Langella and N. Swaminathan, “Unstrained and strained flamelets for LES of premixed combustion,” Combust. Theory Model., vol. 20, no. 3, pp. 410–440, May 2016, doi: 10.1080/13647830.2016.1140230.
[20]         P. Trisjono, K. Kleinheinz, E. R. Hawkes, and H. Pitsch, “Modeling turbulence–chemistry interaction in lean premixed hydrogen flames with a strained flamelet model,” Combust. Flame, vol. 174, pp. 194–207, Dec. 2016, doi: 10.1016/j.combustflame.2016.07.008.
[21]         A. Scholtissek, P. Domingo, L. Vervisch, and C. Hasse, “A self-contained composition space solution method for strained and curved premixed flamelets,” Combust. Flame, vol. 207, pp. 342–355, Sep. 2019, doi: 10.1016/j.combustflame.2019.06.010.
[22]         H. Kolla and N. Swaminathan, “Strained flamelets for turbulent premixed flames, I: Formulation and planar flame results,” Combust. Flame, vol. 157, no. 5, pp. 943–954, May 2010, doi: 10.1016/j.combustflame.2010.01.018.
[23]         T. Poinsot and D. Veynante, Theoretical and numerical combustion, 2. ed. Philadelphia, Pa: Edwards, 2005.
[24]         W. Jin, S. A. Steinmetz, M. Juddoo, M. J. Dunn, Z. Huang, and A. R. Masri, “Effects of shear inhomogeneities on the structure of turbulent premixed flames,” Combust. Flame, vol. 208, pp. 63–78, Oct. 2019, doi: 10.1016/j.combustflame.2019.06.015.
[25]         M. M. Salehi, “Numerical Simulation of Turbulent Premixed Flames with Conditional Source-Term Estimation”.
[26]         B. Jin, R. Grout, and W. K. Bushe, “Conditional Source-Term Estimation as a Method for Chemical Closure in Premixed Turbulent Reacting Flow,” Flow Turbul. Combust., vol. 81, no. 4, pp. 563–582, Dec. 2008, doi: 10.1007/s10494-008-9148-0.
[27]         M. M. Salehi and W. K. Bushe, “Presumed PDF modeling for RANS simulation of turbulent premixed flames,” Combust. Theory Model., vol. 14, no. 3, pp. 381–403, Jul. 2010, doi: 10.1080/13647830.2010.489957.
[28]         L. Vervisch, R. Hauguel, P. Domingo, and M. Rullaud, “Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame,” J. Turbul., vol. 5, p. N4, Jan. 2004, doi: 10.1088/1468-5248/5/1/004.
[29]         H. Kolla, J. W. Rogerson, N. Chakraborty, and N. Swaminathan, “Scalar Dissipation Rate Modeling and its Validation,” Combust. Sci. Technol., vol. 181, no. 3, pp. 518–535, Feb. 2009, doi: 10.1080/00102200802612419.