بررسی عددی تأثیر ترکیب گرین سوخت در محفظه احتراق رم‌جت روی زمان تأخیر در اشتعال و سرعت پسروی سوخت جامد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی شیمی، دانشگاه جامع امام حسین (ع)، تهران، ایران

2 گروه مهندسی شیمی - دانشکده فنی و مهندسی - دانشگاه جامع امام حسین (ع)

10.22034/jfnc.2024.417920.1360

چکیده

کار حاضر به مطالعه‌ی تأثیر ترکیب گرین سوخت در محفظه احتراق رم‌جت روی زمان تأخیر در اشتعال و سرعت پسروی گرین سوخت جامد پلیمری پرداخته است. یک بررسی عددی از شرایط آغازین اشتعال و تثبیت احتراق در سامانه هواتنفسی رم‌جت بر پایه پیشرانه غنی از سوخت انجام شده است. طرحِ با میله، شامل دو آرایش سوخت جامد است که طرح رم‌جت کلاسیک را حفظ کرده است. به موجب احتراق محصول پیرولیز سوخت جامد؛ شبیه‌سازی‌ ناپایا، متلاطم، واکنش‌پذیر و حل هم­زمان مدل­ احتراقی و آشفتگی، معادلات حاکم زمینه­ ساز به منظور مطالعه تأثیر متغیرهای مستقل روی مشخصه‌های عملکردی و ویژگی­های احتراقی در نظر گرفته شده است. با تمرکز بر واکنش­های شیمیایی در محفظه احتراق سوخت پلیمری اتیلن سنگین و وقوع فرآیند اشتعال و احتراق؛ زمان تأخیر در اشتعال شامل اختلاط، تجزیه حرارتی و واکنش تخمین زده شد. نتایج شبیه‌سازی با داده‌های تجربی مقایسه و مدل انتخابی مطابقت خوبی داشت. زمان تأخیر در اشتعال برای هندسه با میله 0.28 ثانیه، برای هندسه کلاسیک 0.43 ثانیه بدست آمد. طرح با میله نرخ پسروی گرین سوخت جامد را افزایش داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical investigation of the effect of grain fuel composition in ramjet combustion chamber on ignition delay time and solid fuel regression rate

نویسندگان [English]

  • Morteza Sarbaz Karajabad 1
  • Ali Akbar Jamali 2
1 Department of Chemical Engineering, Imam Hossein University, Tehran, Iran
2 Chemical Engineering Department - Faculty of Engineering - Imam Hossein University
چکیده [English]

In this article, a numerical investigation of ignition and stabilization of combustion of a new design of an engine equipped with solid fuel is done. The rod design consists of two solid fuels, maintaining the simple design of the classic ramjet. Numerical simulations of unsteady, turbulent, reactive and disintegration due to solid fuel by simultaneously solving combustion and turbulence models, applying
Abstract: This study investigated the effect of grain fuel composition in the ramjet combustion chamber on the ignition delay time and solid fuel regression rate. In this article, a numerical investigation of ignition and stabilization of combustion of a new design of an engine equipped with solid fuel is done. The rod design consists of two solid fuels, maintaining the simple design of the classic ramjet. Numerical simulations of unsteady, turbulent, reactive and disintegration due to solid fuel by simultaneously solving combustion and turbulence models, applying numerical methods in the analysis of the governing equations that are the basis for obtaining some results including the effect of variables, functional characteristics and characteristics Combustion and finally access to the ignition delay time of fuel-rich propellant in solid fuel ramjet systems. In examining the chemical reactions of the combustion chamber, heavy polyethylene is taken into consideration and finally the ignition and combustion process continues. In line with the diagnosis for the correct prediction of the ignition delay time in the two mentioned geometries, the simulation results were in good agreement with the experimental data of the comparison and the selected model. The ignition delay time for the rod geometry was 0.28 seconds, for the classic geometry it was 0.43 seconds. And the design with the rod has increased the fuel regression rate.
.

کلیدواژه‌ها [English]

  • Ignition delay time
  • solid fuel ramjet
  • high density polyethylene
  • fuel grain compound
  • "
  • combustion chamber'
  1. .  W. Jung, S. Jung, T. Kwon, J. Park and S. Kwon, "Ignition delay in solid-fuel ramjet combustor," J. Propuls. Power, vol. 34, pp. 1519-1528, Nov 2018.

    1. C. A. Stevenson, and D. W. Netzer, "Primitive-variable model applications to solid-fuel ramjet combustion," J Spacecr Rockets, vol. 18, pp. 89-94, Jan 1981.
    2. M. E. Metochianakis and D. W. Netzer, "Modeling solid-fuel ramjet combustion, including radiation to the fuel surface,"Spacecr Rockets, vol. 20, pp. 405-406, Dec 1983.
    3. S. Herfat, M. Mahmoodi and J. Pirkandi, "Simulation and optimization of solid fuel rocket-ramjet considering the effects of chemical reactions and turbulence.," The 19th International Conference of Iranian Aerospace Society, Tehran, IRAN, May 18-20, 2021, https://civilica.com/doc/1362404.
    4. H. Kadosh and B. Natan, "Internal Ballistics of a Boron-Containing Solid Fuel Ramjet," Combust. Sci. Technol, vol. 193, vol. 193, pp. 2672-2691, Nov 2021.
    5. T. M. Liou, W. Y. Lien and P. W. Hwang, "Large-eddy simulations of turbulent reacting flows in a chamber with gaseous ethylene injecting through the porous wall,"Combust, vol. 99, pp. 591-600, Dec 1994.
    6. A. M. Tahsini and M. Farshchi, "Numerical study of solid fuel evaporation and auto-ignition in a dump combustor,"Acta Astronaut., vol. 67, pp. 774-783, Oct 2010.
    7. L. B. Li, X. Chen, C. S. Zhou, M. Zhu, and O. Musa, "Experimental investigation on laser ignition and combustion characteristics of NEPE propellant,"PEP, vol. 42, pp. 1095-1103, Sep 2017.
    8. J. T. Yang, C. Y. Y. Wu and S. J. Din, "Ignition transient of a polymethylmethacrylate slab in a sudden-expansion combustor,"Combust, vol. 98, pp. 300-308, Aug 1994.
    9. T. Kashiwagi, C. H. Waldman, R. B. Rothman and M. Summerfield, "Ignition of Polymers in a Hot Oxidizing Gas,"Combust. Sci. Technol, vol. 8, pp. 121-131, Jan 1973.
    10. G. R. S. Thangadpai, B. S. Chandran, V. Babu and T. Sundararajan, "Numerical investigation of the intake flow characteristics for a ramjet engine with and without heat addition in the combustion chamber,"Def. Sci. J., vol. 54, 3, 2004.
    11. G. R. S. Thangadurai, B. S. Chandran, V. Babu, and T. Sundararajan, "Numerical Analysis of Integrated Liquid Ramjet Engine,"Def. Sci. J., vol. 58, p. 327, May 2008.
    12. T. Niioka, M. Takahashi and M. Izumikawa, "Gas-phase ignition of a solid fuel in a hot stagnation-point flow," Symp. Combust. Proc., Vol. 18, pp. 741-747, Jan 1981.
    13. J. T. Yang and C. Y. Wu, "Controlling mechanisms of ignition of solid fuel in a sudden-expansion combustor,"J. Propuls. Power., vol. 11(3), pp. 483-488, May 1995.
    14. M. Sarbaz, A. Pishehvar and A. Jamali, " Transient ignition of solid fuel in the sudden expansion combustion chamber," The 9th Iran Fuel and Combustion Conference, Shiraz, IRAN, February 8-10, 2022, https://civilica.com/doc/1452527. [in Persian]
    15. O. Musa, X. Chen, Y. Li, W. Li and W. Liao, "Unsteady simulation of ignition of turbulent reactive swirling flow of Novel design of solid-fuel Ramjet motor,"Energies, vol. 12, p. 2513, Jun 2019.
    16. J. Blazek, "Computational Fluid Dynamics: Principles and Applications," Butterworth-Heinemann: San Diego, CA, USA, 2015.
    17. K.K. Kuo, "Principles of Combustion," John Wiley & Sons, Inc.: New York, NY, USA, Chapter 3, 2005.
    18. T. Poinsot and D. Veynante, "Theoretical and Numerical Combustion," R.T. Edwards, Inc.: Philadelphia, PA, USA, 2005.
    19. A. Yazdani, and A.A. Jamali, " Numerical investigation of the effect of combustion and turbulence models in estimating the combustion characteristics of a fuel-rich propellant -case study: ramjet," Combust Flame., vol. 15, pp. 108-135, Nov 2022.
    20. U. D. F. Manual, "ANSYS FLUENT," 12.0. Theory Guide, 67, 2009.