اثر میزان پیچش جریان بر احتمال اشتعال موفق و نحوه انتشار هسته اولیه شعله در مشعل پیچشی دوگانه* امیرکبیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه امیرکبیر دانشکده هوافضا

2 دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر

10.22034/jfnc.2023.180232

چکیده

در این مقاله، تأثیر میزان پیچش جریان بر الگوی اختلاط، احتمال اشتعال موفق و نحوه انتشار شعله در یک مشعل گازی غیرپیش‌آمیخته با سوخت گاز طبیعی، با استفاده از شبیه‌سازی عددی، تصویربرداری دیجیتال و سرعت بالا، اندازه‌گیری، و مورد بررسی قرار گرفت. نقشه‌های احتمال اشتعال موفق با تغییر موقعیت جایگاه جرقه‌زن در جهات محوری و شعاعی اندازه‌گیری و میدان جریان و الگوی اختلاط با استفاده از شبیه‌سازی عددی بررسی شدند. به منظور بررسی نحوه انتشار هسته اولیه شعله، تصویربرداری دیجیتال با سرعت بالا مورد استفاده قرار گرفت. بر اساس نمودارهای احتمال اشتعال موفق سه ناحیه تعریف شد. اولین ناحیه تحت عنوان ناحیه غیرمؤثر نام‌گذاری شده است که در آن احتمال موفقیت اشتعال کمتر از 20 درصد است. ناحیه دوم ناحیه گذار نام دارد که در آن احتمال اشتعال موفق بین20 درصد تا 80 درصد است و موفقیت اشتعال به مقدار زیاد به موقعیت جرقه‌زن وابسته است. ناحیه سوم ناحیه احتمال بالا است که در آن احتمال موفقیت اشتعال بیشتر از 80 درصد است. نتایج این بررسی نشان می‌دهد که افزایش عدد پیچش جریان باعث افزایش نرخ اختلاط می‌شود، اما باعث بهبود توزیع احتمال اشتعال موفق نمی‌شود. در واقع، با مقادیر عدد پیچش بالا، ناحیه احتمال بالا کوچک می‌شود، اما در جریان‌های با مقادیر عدد پیچش کمتر، ناحیه احتمال بالا توزیع گسترده‌تری در خروجی مشعل داشته، و ویژگی‌های اشتعالی بهتری را شامل می‌شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of swirl intensity on the probability of successful ignition and kernel propagation in the Amirkabir double swirl burner.

نویسندگان [English]

  • Hamid reza Tajik 1
  • Sadegh Tabejamaat 2
  • alireza Fazlollahi-Ghomshi 2
1 Amirkabir university of Technology Aerospace faculity
2 Department of Aerospace Engineering, Amirkabir University of Technology
چکیده [English]

In this article, the influences of swirl intensity on the mixing pattern, successful ignition probability, and flame propagation manner in a non-premixed gas burner with natural gas fuel have been examined by using numerical simulation and high-speed digital imaging. The ignition success probability maps were scrutinized under changing spark location in axial and radial directions. The flow field and mixing pattern were further inspected with the aid of numerical simulation. High-speed digital imaging was employed to study the initial flame kernel propagation. The ignition success probability diagrams defined three areas. The first, dubbed the ineffective zone, holds less than a 20% ignition success chance. The second, known as the transitional zone, has an ignition success probability between 20% and 80%. Ignition success here significantly depends on the spark location. The third area—the high-probability zone—has over an 80% ignition success chance. Findings from the study demonstrate an increased swirl number promotes a higher mixing rate, but it doesn't enhance the distribution of successful ignition probability. Higher swirl numbers actually reduce the high-probability zone, whereas lower swirl numbers allow a broader distribution in the burner outlet and better ignition characteristics.
 

کلیدواژه‌ها [English]

  • Ignition
  • Swirl Flame
  • Non-Premixed Combustion
  • Flame Propagation
  • Numerical Simulation

 

[1]. E. Mastorakos, ‘Ignition of turbulent non-premixed flames’, Progress in Energy and Combustion Science, vol. 35, no. 1, pp. 57–97, Feb. 2009.
[1]. S.Ahmed, Spark Ignition of Turbulent Non-Premixed Flames, Ph.D. thesis University of Cambridge, 2006.
[1]. L. Esclapez, F. Collin-Bastiani, E. Riber, and B. Cuenot, ‘A statistical model to predict ignition probability’, Combustion and Flame, vol. 225, pp. 180–195, Mar. 2021.
[1]. M. Kono, K. Hatori, and K. IInuma, ‘Investigation on ignition ability of composite sparks in flowing mixtures’, Symposium (International) on Combustion, vol. 20, no. 1, pp. 133–140, Jan. 1985.
[1]. B. Sforzo, J. Kim, J. Jagoda, and J. Seitzman, ‘Ignition Probability in a Stratified Turbulent Flow With a Sunken Fire Igniter’, Journal of Engineering for Gas Turbines and Power, vol. 137, no. 1, Aug. 2014.
[1]. M. Cordier, A. Vandel, G. Cabot, B. Renou, and A. M. Boukhalfa, ‘Laser-Induced Spark Ignition of Premixed Confined Swirled Flames’, Combustion Science and Technology, vol. 185, no. 3, pp. 379–407, Mar. 2013.
[1]. A. D. Birch, D. R. Brown, and M. G. Dodson, ‘Ignition probabilities in turbulent mixing flows’, in Symposium (International) on Combustion, 1981, vol. 18, pp. 1775–1780.
[1]. M. T. E. Smith, A. D. Birch, D. R. Brown, and M. Fairweather, ‘Studies of ignition and flame propagation in turbulent jets of natural gas, propane and a gas with a high hydrogen content’, Symposium (International) on Combustion, vol. 21, no. 1, pp. 1403–1408, Jan. 1988.
[1]. L. Esclapez, E. Riber, and B. Cuenot, ‘Ignition probability of a partially premixed burner using LES’, Proceedings of the Combustion Institute, vol. 35, no. 3, pp. 3133–3141, Jan. 2015.
[1]. S. F. Ahmed and E. Mastorakos, ‘Spark ignition of lifted turbulent jet flames’, Combustion and Flame, vol. 146, no. 1, pp. 215–231, Jul. 2006.
[1]. S. F. Ahmed, R. Balachandran, T. Marchione, and E. Mastorakos, ‘Spark ignition of turbulent nonpremixed bluff-body flames’, Combustion and Flame, vol. 151, no. 1, pp. 366–385, Oct. 2007.
[1]. S. F. Ahmed and E. Mastorakos, ‘Correlation of Spark Ignition with the Local Instantaneous Mixture Fraction in a Turbulent Nonpremixed Methane Jet’, Combustion Science and Technology, vol. 182, no. 9, pp. 1360–1368, Aug. 2010.
[1]. J.-F. Bourgouin, D. Durox, T. Schuller, J. Beaunier, and S. Candel, ‘Ignition dynamics of an annular combustor equipped with multiple swirling injectors’, Combustion and Flame, vol. 160, no. 8, pp. 1398–1413, Aug. 2013.
[1]. A. Neophytou, E. S. Richardson, and E. Mastorakos, ‘Spark ignition of turbulent recirculating non-premixed gas and spray flames: A model for predicting ignition probability’, Combustion and Flame, vol. 159, no. 4, pp. 1503–1522, Apr. 2012.
[1]. W. Shen et al., ‘Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions’, Energy, vol. 218, p. 119521, Mar. 2021.
[1]. E. S. Richardson and E. Mastorakos, ‘NUMERICAL INVESTIGATION OF FORCED IGNITION IN LAMINAR COUNTERFLOW NON-PREMIXED METHANE-AIR FLAMES’, Combustion Science and Technology, vol. 179, no. 1–2, pp. 21–37, Jan. 2007..
[1]. E. S. Richardson, N. Chakraborty, and E. Mastorakos, ‘Analysis of direct numerical simulations of ignition fronts in turbulent non-premixed flames in the context of conditional moment closure’, Proceedings of the Combustion Institute, vol. 31, no. 1, pp. 1683–1690, Jan. 2007.
[1]. G. Lacaze, E. Richardson, and T. Poinsot, ‘Large eddy simulation of spark ignition in a turbulent methane jet’, Combustion and Flame, vol. 156, no. 10, pp. 1993–2009, Oct. 2009.
[1]. A. Triantafyllidis, E. Mastorakos, and R. L. G. M. Eggels, ‘Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure’, Combustion and Flame, vol. 156, no. 12, pp. 2328–2345, Dec. 2009.
[1]. M. EidiAttarZade, S. Tabejamaat, M. Mani, and M. Farshchi, ‘Numerically investigation of ignition process in a premixed methane-air swirl configuration’, Energy, vol. 171, pp. 830–841, Mar. 2019.
[1]. W. P. Jones and V. N. Prasad, ‘LES-pdf simulation of a spark ignited turbulent methane jet’, Proceedings of the Combustion Institute, vol. 33, no. 1, pp. 1355–1363, Jan. 2011.
[1]. R. E. Teets and J. A. Sell, ‘Calorimetry of Ignition Sparks’, SAE Transactions, vol. 97, pp. 371–383, 1988.
[1]. P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, ‘Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions’, Combustion and Flame, vol. 144, no. 1, pp. 205–224, Jan. 2006.
[1]. Y. C. See and M. Ihme, ‘Large eddy simulation of a partially-premixed gas turbine model combustor’, Proceedings of the Combustion Institute, vol. 35, no. 2, pp. 1225–1234, Jan. 2015.
[1]. F. C. Christo and B. B. Dally, ‘Modeling turbulent reacting jets issuing into a hot and diluted coflow’, Combustion and Flame, vol. 142, no. 1, pp. 117–129, Jul. 2005.
[1]. B. J. Daly and F. H. Harlow, ‘Transport Equations in Turbulence’, The Physics of Fluids, vol. 13, no. 11, pp. 2634–2649, Nov. 1970.
[1]. M. M. Gibson and B. E. Launder, ‘Ground effects on pressure fluctuations in the atmospheric boundary layer’, Journal of Fluid Mechanics, vol. 86, no. 3, pp. 491–511, 1978.
[1]. B. Launder and M. Leschziner, ‘Modelling strongly swirling recirculating jet with Reynolds stress transport closure’, 6th Symposium on Turbulent Shear Flows, vol. 1, pp. 17–16, Jan. 1987.
[1]. B. E. Launder, ‘Second-moment closure and its use in modelling turbulent industrial flows’, International journal for numerical methods in fluids, vol. 9, no. 8, pp. 963–985, 1989.
[1]. Launder, and E. Brian, 'Second-Moment Closure: Present… and Future?', International Journal of Heat and Fluid Flow, vol. 10, pp. 282-300, 1989.
[1]. T. Poinsot and D. Veynante, Theoretical and Numerical Combustion. Edwards, 2005.
[1]. F.C. Christo, and B.B. Dally, Application of Transport Pdf Approach for Modelling Mild Combustion, 15th Australasian Fluid Mechanics Conference, University of Sydney, Australia, 2004.
[1]. A. C. Benim, S. Iqbal, A. Nahavandi, W. Meier, A. Wiedermann, and F. Joos, ‘Analysis of Turbulent Swirling Flow in an Isothermal Gas Turbine Combustor Model’, 2014.
[1]. A. Mardani and A. Fazlollahi-Ghomshi, ‘Numerical Investigation of a Double-Swirled Gas Turbine Model Combustor Using a RANS Approach with Different Turbulence–Chemistry Interaction Models’, Energy Fuels, vol. 30, no. 8, pp. 6764–6776, Aug. 2016.
[1]. A. Fazlollahi-Ghomshi and A. Mardani, ‘Numerical Investigation of Reacting Flow in a Double-swirled Gas Turbine Model Combustor’, Fuel and Combustion, vol. 9, no. 2, pp. 39–58, 2016 (in Persian).
[1]. R. W. Schefer, G. H. Evans, J. Zhang, A. J. Ruggles, and R. Greif, ‘Ignitability limits for combustion of unintended hydrogen releases: Experimental and theoretical results’, International Journal of Hydrogen Energy, vol. 36, no. 3, pp. 2426–2435, Feb. 2011.