تاثیر افزودنی های ان-بوتانول و دی متیل کربنات به عنوان افزودنی سوخت بیودیزل در عملکرد و آلایندگی موتور دیزل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 عضو هیات علمی دانشگاه محقق اردبیلی، اردبیل، ایران

10.22034/jfnc.2023.378543.1338

چکیده

موتورهای دیزل به عنوان اصلی ترین منابع تولید انرژی و مصرف سوخت دیزل به شمار می‌آیند. به کارگیری از سوخت بیودیزل به عنوان بخشی از سوخت مصرفی موتورهای دیزل می‌تواند تاثیر مثبتی در کاهش به کارگیری از منابع فسیلی و انتشار آلاینده ها داشته باشد. به کارگیری از سوخت بیودیزل در کنار مزایای آن، دارای معایبی نظیر افزایش انتشار اکسیدهای نیتروژن می‌باشد که به عنوان یک گاز سمی‌تلقی می‌شود. محققان بسیاری افزودنی‌های متفاوتی در راستای پوشش بخشی از معایب سوخت بیودیزل ارائه داده‌اند. در این مقاله دو نوع افزودنی اکسیژن‌دار شامل دی متیل کربنات و ان بوتانول به صورت تلفیقی با مقادیر کم در سوخت‌های B2 (2 درصد بیودیزل و 98 درصد دیزل) و B5 (5 درصد بیودیزل و 95 درصد دیزل) مخلوط شدند. به کارگیری مقادیر کم این افزودنی‌ها می‌تواند موجب کاهش هزینه تولید سوخت شود. بر اساس نتایج به دست آمده، نمونه سوخت‌های B2D10N10 و B2D10N0 توانستند توان ترمزی موتور دیزل را به ترتیب حدود 12 و 10 درصد نسبت به سوخت B2 افزایش دهند. از طرفی استفاده از نمونه سوخت‌های حاوی افزودنی‌های ترکیبی دی متیل کربنات و ان بوتانول در سوخت B2 به طور متوسط حدود 18 درصد مصرف سوخت ویژه ترمزی را نسبت به سوخت دیزل و حدود 32 درصد نسبت به سوخت B2 کاهش داد. استفاده از افزودنی‌های ترکیبی دی متیل کربنات و ان بوتانول میزان بازده حرارتی را به‌طور متوسط حدود 15 الی 30 درصد نسبت به سوخت‌های دیزل، B2 و B5 افزایش داد. افزودن دی متیل کربنات و ان بوتانول به‌صورت ترکیبی در مقادیر کم موجب کاهش انتشار مونوکسیدکربن به میزان قابل توجه شد. بالاترین میزان انتشار دی اکسیدکربن در سوخت‌های حاوی ترکیبات ترکیبی دی متیل کربنات، ان بوتانول و B5 اتفاق می‌افتد که حدود 10 الی 15 درصد بالاتر از نمونه شاهد بود. طی فرایند بهینه‌سازی، نمونه سوخت B2D30N20 به‌عنوان فرمولاسیون بهینه در تلفیق سوخت دیزل، بیودیزل، دی‌متیل کربنات و ان بوتانول انتخاب شد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of n-butanol and dimethyl carbonate additives as biodiesel fuel additives on diesel engine performance and emissions

نویسندگان [English]

  • Meghdad Khayat 1
  • Hadi Ghaebi 1
  • Ebrahim Abdi Aghdam 2
  • SIna Faizollahzadeh 1
1 UMA
2 Faculty of Engineering, University of Mohaghegh Ardabili, Iran
چکیده [English]

Diesel engines are considered the main sources of energy production and diesel fuel consumption. The use of biodiesel fuel as a part of diesel engines can have a positive effect on reducing the use of fossil resources and the emission of pollutants. Using biodiesel fuel, along with its advantages, has disadvantages such as increasing the emission of nitrogen oxides, which is considered a toxic gas. Many researchers have proposed different additives to cover some of the disadvantages of biodiesel fuel. In this article, two types of oxygen additives, including dimethyl carbonate and n-butanol, were combined with small amounts in B2 (2% biodiesel and 98% diesel) and B5 (5% biodiesel and 95% diesel) fuels. Using small amounts of these additives can reduce the cost of fuel production. Based on the obtained results, B2D10N10 and B2D10N0 fuel samples were able to increase the braking power of the diesel engine by about 12 and 10%, respectively, compared to B2 fuel. On the other hand, the use of fuel samples containing dimethyl carbonate and n-butanol additives in B2 fuel reduced the special brake fuel consumption by about 18% compared to diesel fuel and about 32% 
Diesel engines are considered the main sources of energy production and diesel fuel consumption. The use of biodiesel fuel as a part of diesel engines can have a positive effect on reducing the use of fossil resources and the emission of pollutants. Using biodiesel fuel, along with its advantages, has disadvantages such as increasing the emission of nitrogen oxides, which is considered a toxic gas. Many researchers have proposed different additives to cover some of the disadvantages of biodiesel fuel. In this article, two types of oxygen additives, including dimethyl carbonate and n-butanol, were combined with small amounts in B2 (2% biodiesel and 98% diesel) and B5 (5% biodiesel and 95% diesel) fuels. Using small amounts of these additives can reduce the cost of fuel production. Based on the obtained results, B2D10N10 and B2D10N0 fuel samples were able to increase the braking power of the diesel engine by about 12 and 10%, respectively, compared to B2 fuel. On the other hand, the use of fuel samples containing dimethyl carbonate and n-butanol additives in B2 fuel reduced the special brake fuel consumption by about 18% compared to diesel fuel and about 32% compared to B2 fuel. Using the combined additives of dimethyl carbonate and n-butanol increased the thermal efficiency by an average of 15-30% compared to diesel, B2, and B5 fuels. The addition of dimethyl carbonate and n-butanol in combination in small amounts significantly reduced carbon monoxide emissions. The highest amount of carbon dioxide emission occurs in fuels containing the combined compounds of dimethyl carbonate, n-butanol, and B5, which was about 10-15% higher than the control sample. During the optimization process, the B2D3N2 fuel sample was selected as the optimal formulation in combining diesel fuel, biodiesel, dimethyl carbonate, and n-butanol.

کلیدواژه‌ها [English]

  • biodiesel
  • diesel engine
  • diesel fuel
  • dimethyl carbonate
  • n-butanol
 
[1]    W. N. M. W. Ghazali, R. Mamat, H. H. Masjuki, and G. Najafi, "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable Sustainable Energy Reviews, vol. 51, pp. 585-602, 2015.
[2]    M. Wu and S. Yang, "Combustion characteristics of multi-component cedar bio-oil/kerosene droplet," Energy, vol. 113, pp. 788-795, 2016.
[3]    N. Banapurmath, W. M. Budzianowski, Y. Basavarajappa, R. Hosmath, V. Yaliwal, and P. Tewari, "Effects of compression ratio, swirl augmentation techniques and ethanol addition on the combustion of CNG–biodiesel in a dual-fuel engine," International Journal of Sustainable Engineering, vol. 7, no. 1, pp. 55-70, 2014.
[4]    M. Morales, G. Aroca, R. Rubilar, E. Acuna, B. Mola-Yudego, and S. González-García, "Cradle-to-gate life cycle assessment of Eucalyptus globulus short rotation plantations in Chile," Journal of Cleaner Production, vol. 99, pp. 239-249, 2015.
[5]    R. Vigneswaran, K. Annamalai, B. Dhinesh, and R. Krishnamoorthy, "Experimental investigation of unmodified diesel engine performance, combustion and emission with multipurpose additive along with water-in-diesel emulsion fuel," Energy Conversion Management, vol. 172, pp. 370-380, 2018.
[6]    A. Sharma, N. Kumar, V. Vibhanshu, and A. Deep, "Emission studies on a VCR engine using stable diesel water emulsion," SAE Technical Paper0148-7191, 2013.
[7]    S. F. Ardabili, B. Najafi, M. Aghbashlo, Z. Khounani, and M. Tabatabaei, "Performance and emission analysis of a dual-fuel engine operating on high natural gas substitution rates ignited by aqueous carbon nanoparticles-laden diesel/biodiesel emulsions," Fuel, vol. 294, p. 120246, 2021.
[8]    A. J. E. S. Demirbaş, Part A: Recovery, Utilization, and E. Effects, "Biodegradability of biodiesel and petrodiesel fuels," vol. 31, no. 2, pp. 169-174, 2008.
[9]    A. T. Hoang, "Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review," Fuel Processing Technology, vol. 218, p. 106840, 2021.
[10]  A. T. Hoang, "Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system," Journal of Marine Engineering Technology, vol. 20, no. 5, pp. 299-311, 2021.
[11]  S. Faizollahzadeh Ardabili, B. Najafi, and S. Shamshirband, "Fuzzy logic method for the prediction of cetane number using carbon number, double bounds, iodic, and saponification values of biodiesel fuels," Environmental Progress Sustainable Energy, vol. 38, no. 2, pp. 584-599, 2019.
[12]  D. Balasubramanian, A. T. Hoang, I. P. Venugopal, A. Shanmugam, J. Gao, and T. Wongwuttanasatian, "Numerical and experimental evaluation on the pooled effect of waste cooking oil biodiesel/diesel blends and exhaust gas recirculation in a twin-cylinder diesel engine," Fuel, vol. 287, p. 119815, 2021.
[13]  Y. Devarajan, D. B. Munuswamy, B. Nagappan, and A. K. Pandian, "Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine," Heat Mass Transfer, vol. 54, no. 6, pp. 1803-1811, 2018.
[14]  T. Boningari and P. G. Smirniotis, "Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement," Current Opinion in Chemical Engineering, vol. 13, pp. 133-141, 2016.
[15]  T. Shaafi and R. Velraj, "Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions," Renewable Energy, vol. 80, pp. 655-663, 2015.
[16]  S. Radhakrishnan, Y. Devarajan, A. Mahalingam, and B. Nagappan, "Emissions analysis on diesel engine fueled with palm oil biodiesel and pentanol blends," Journal of Oil Palm Research, vol. 29, no. 3, pp. 380-386, 2017.
[17]  G. Labeckas, S. Slavinskas, and I. Kanapkienė, "The individual effects of cetane number, oxygen content or fuel properties on the ignition delay, combustion characteristics, and cyclic variation of a turbocharged CRDI diesel engine–Part 1," Energy Conversion Management, vol. 148, pp. 1003-1027, 2017.
[18]  A. Prabhu, M. Venkata Ramanan, and J. Jayaprabakar, "Production, properties and engine characteristics of Jatropha biodiesel–a review," International Journal of Ambient Energy, vol. 42, no. 15, pp. 1810-1814, 2021.
[19]  K. P. Rao and V. Reddi, "Parametric optimization for performance and emissions of DI diesel engine with Mahua biodiesel along with Diethyl ether as an additive," Biofuels, vol. 11, no. 1, pp. 37-47, 2020.
[20]  X. HeLin, H. BeiBei, Z. PengFei, and A. JIANG, "Combustion and emissions characteristics of a diesel engine fueled with blends of diesel and DMF," Chinese Science Bulletin, vol. 62, no. 30, pp. 3506-3513, 2017.
[21]  K. Velmurugan and A. Sathiyagnanam, "Impact of antioxidants on NOx emissions from a mango seed biodiesel powered DI diesel engine," Alexandria Engineering Journal, vol. 55, no. 1, pp. 715-722, 2016.
[22]  J. P. Nuszkowski, The effects of fuel additives on diesel engine emissions during steady state and transient operation. West Virginia University, 2008.
[23]  J. E. Dec, "A conceptual model of DL diesel combustion based on laser-sheet imaging," SAE transactions, pp. 1319-1348, 1997.
[24]  H. Parikh, V. Prajapati, and K. Thakkar, "Performance evaluation and emission analysis of 4-S, IC engine using ethanol bio-diesel blended with diesel fuel," J Int J Res Eng Technol, vol. 2, no. 4, pp. 465-9, 2013.
[25]  J. Guilera, R. Bringué, E. Ramírez, M. Iborra, and J. Tejero, "Comparison between ethanol and diethyl carbonate as ethylating agents for ethyl octyl ether synthesis over acidic ion-exchange resins," Industrial engineering chemistry research, vol. 51, no. 50, pp. 16525-16530, 2012.
[26]  N. Yilmaz, "Comparative analysis of biodiesel–ethanol–diesel and biodiesel–methanol–diesel blends in a diesel engine," Energy, vol. 40, no. 1, pp. 210-213, 2012.
[27]  X. Shi et al., "Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine," Atmospheric Environment, vol. 40, no. 14, pp. 2567-2574, 2006.
[28]  O. Doğan, "The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions," Fuel, vol. 90, no. 7, pp. 2467-2472, 2011.
[29]  D. Rakopoulos, C. Rakopoulos, E. Giakoumis, A. Dimaratos, and D. Kyritsis, "Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine," Energy conversion management, vol. 51, no. 10, pp. 1989-1997, 2010.
[30]  W. Yang et al., "Emulsion fuel with novel nano-organic additives for diesel engine application," Fuel, vol. 104, pp. 726-731, 2013.
[31]  K. Górski, W. Lotko, and M. Swat, "Particulate matter emission from diesel engine fuelled with blends of diesel oil and ethyl tert-butyl ether," Archiwum Motoryzacji, pp. 119-126, 2010.
[32]  S. Gaïl et al., "A wide-ranging kinetic modeling study of methyl butanoate combustion," Proceedings of the Combustion Institute, vol. 31, no. 1, pp. 305-311, 2007.
[33]  Y. Wang and Y. Liu, "An oxygenating additive for reducing the emission of diesel engine," in 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008, pp. 3931-3933: IEEE.
[34]  B. H. Mehta, H. V. Mandalia, and A. B. Mistry, "A review on effect of oxygenated fuel additive on the performance and emission characteristics of diesel engine," in National conference on recent trends in engineering & technology, 2011, pp. 13-14.
[35]  B. R. Kumar and S. Saravanan, "Partially premixed low temperature combustion using dimethyl carbonate (DMC) in a DI diesel engine for favorable smoke/NOx emissions," Fuel, vol. 180, pp. 396-406, 2016.
[36]  D. B. Hulwan and S. V. Joshi, "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, vol. 88, no. 12, pp. 5042-5055, 2011.
[37]  S. Hill and L. D. Smoot, "Modeling of nitrogen oxides formation and destruction in combustion systems," Progress in energy combustion science, vol. 26, no. 4-6, pp. 417-458, 2000.
[38]  E. Khalife, M. Tabatabaei, A. Demirbas, and M. Aghbashlo, "Impacts of additives on performance and emission characteristics of diesel engines during steady state operation," Progress in energy Combustion Science, vol. 59, pp. 32-78, 2017.
[39]  E. Sukjit, J. M. Herreros, K. Dearn, R. García-Contreras, and A. Tsolakis, "The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol-diesel blends," Energy, vol. 42, no. 1, pp. 364-374, 2012.
[40]  C. Yu, S. Bari, and A. Ameen, "A comparison of combustion characteristics of waste cooking oil with diesel as fuel in a direct injection diesel engine," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 216, no. 3, pp. 237-243, 2002.
[41]  C. Swaminathan and J. Sarangan, "Performance and exhaust emission characteristics of a CI engine fueled with biodiesel (fish oil) with DEE as additive," biomass bioenergy, vol. 39, pp. 168-174, 2012.
[42]  V. P. Ferreira, J. Martins, E. A. Torres, I. M. Pepe, and J. M. R. De Souza, "Performance and emissions analysis of additional ethanol injection on a diesel engine powered with A blend of diesel-biodiesel," Energy for Sustainable Development, vol. 17, no. 6, pp. 649-657, 2013.
[43]  O. Armas, R. García-Contreras, and Á. Ramos, "Pollutant emissions from engine starting with ethanol and butanol diesel blends," Fuel Processing Technology, vol. 100, pp. 63-72, 2012.
[44]  L. Xing-Cai, Y. Jian-Guang, Z. Wu-Gao, and H. Zhen, "Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol–diesel blend fuel," Fuel, vol. 83, no. 14-15, pp. 2013-2020, 2004.
[45]  N. Yilmaz and S. M. Davis, "Diesel blends with high concentrations of biodiesel and n-butanol: Effects on regulated pollutants and polycyclic aromatic hydrocarbons," Process Safety Environmental Protection, vol. 166, pp. 430-439, 2022.
[46]  S. Yu, C. Cao, and W. Lv, "Combustion and emission characteristics investigation of a marine diesel engine powered by diesel/biodiesel/n‐butanol blends," Energy Science Engineering, vol. 10, no. 9, pp. 3317-3330, 2022.
[47]  L. Razzaq et al., "Effect of biodiesel-dimethyl carbonate blends on engine performance, combustion and emission characteristics," Alexandria Engineering Journal, vol. 61, no. 7, pp. 5111-5121, 2022.
[48]  T. Ramesh, A. Sathiyagnanam, M. V. D. Poures, and P. Murugan, "A Comprehensive Study on the Effect of Dimethyl Carbonate Oxygenate and EGR on Emission Reduction, Combustion Analysis, and Performance Enhancement of a CRDI Diesel Engine Using a Blend of Diesel and Prosopis juliflora Biodiesel," International Journal of Chemical Engineering, vol. 2022, 2022.
[49]  S. Faizollahzadeh Ardabili, B. Najafi, M. Alizamir, A. Mosavi, S. Shamshirband, and T. Rabczuk, "Using SVM-RSM and ELM-RSM approaches for optimizing the production process of methyl and ethyl esters," Energies, vol. 11, no. 11, p. 2889, 2018.
[50]  B. Najafi, S. Faizollahzadeh Ardabili, A. Mosavi, S. Shamshirband, and T. J. E. Rabczuk, "An intelligent artificial neural network-response surface methodology method for accessing the optimum biodiesel and diesel fuel blending conditions in a diesel engine from the viewpoint of exergy and energy analysis," vol. 11, no. 4, p. 860, 2018.
[51]  M. J. Pratas, S. V. Freitas, M. B. Oliveira, S. C. Monteiro, Á. S. Lima, and J. A. Coutinho, "Biodiesel density: experimental measurements and prediction models," Energy Fuels, vol. 25, no. 5, pp. 2333-2340, 2011.
[52]  B. Tesfa, F. Gu, R. Mishra, and A. Ball, "LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends," Energy conversion management, vol. 71, pp. 217-226, 2013.
[53]  P. S. Mehta and K. Anand, "Estimation of a lower heating value of vegetable oil and biodiesel fuel," Energy Fuels, vol. 23, no. 8, pp. 3893-3898, 2009.
[54]  M. Gülüm and A. Bilgin, "Density, flash point and heating value variations of corn oil biodiesel–diesel fuel blends," Fuel Processing Technology, vol. 134, pp. 456-464, 2015.
[55]  A. Álvarez, M. n. Lapuerta, and J. R. Agudelo, "Prediction of flash-point temperature of alcohol/biodiesel/diesel fuel blends," Industrial Engineering Chemistry Research, vol. 58, no. 16, pp. 6860-6869, 2019.
[56]  L. F. R. Verduzco, "Density and viscosity of biodiesel as a function of temperature: Empirical models," Renewable Sustainable Energy Reviews, vol. 19, pp. 652-665, 2013.
[57]  K. Krisnangkura, T. Yimsuwan, and R. Pairintra, "An empirical approach in predicting biodiesel viscosity at various temperatures," Fuel, vol. 85, no. 1, pp. 107-113, 2006.
[58]  K. Sivaramakrishnan and P. Ravikumar, "Determination of cetane number of biodiesel and its influence on physical properties," ARPN journal of engineering applied sciences, vol. 7, no. 2, pp. 205-211, 2012.
[59]  C. Venkataraman and G. U. M. Rao, "Emission factors of carbon monoxide and size-resolved aerosols from biofuel combustion," Environmental science technology, vol. 35, no. 10, pp. 2100-2107, 2001.
[60]  F. Payri, V. R. Bermúdez, B. Tormos, and W. G. Linares, "Hydrocarbon emissions speciation in diesel and biodiesel exhausts," Atmospheric Environment, vol. 43, no. 6, pp. 1273-1279, 2009.