مطالعه عددی تاثیر مکان نازل سیستم اطفای حریق مه آب در خاموشی آتش محافظت شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

2 دانشکده مهندسی مکانیک، دانشگاه M تربیت مدرس

چکیده

با قرارگیری آتش در محفظه، مشکلاتی همچون عدم دسترسی به آتش و عدم نشست ذرات اسپری منجر به ‌تأخیر در خاموشی شعله می‌شود. از‏این‏ رو در این پژوهش با مطالعه عددی، رشد و گسترش حریق و اطفای آن با سیستم اطفای حریق مه آب با اثربخشی موقعیت نازل در آتش محافظت­شده انجام شده است. مکان اثر نازل سیستم اطفای­ حریق مه ­آب تحت پنج موقیعت قرارگیری چهار طرف، حالت مرکزی و یک­طرف، حالت مرکزی و چهار­طرف، حالت یک­ طرف و حالت مرکزی ارزیابی و بررسی شده است. هندسه پژوهش یک اتاق بدون سقف بوده که در دیواره آن درب یا پنجره­ای وجود ندارد. منبع سوخت در مرکز اتاق قرار داشته و صفحه­ ای در مرکز اتاق به­ عنوان سپر آتش (صفحه ­آتش محافظ ت­شده) با ارتفاع 50 سانتی­متر از کف اتاق (بر روی آتش) قرار دارد. با توجه ‌به نتایج مشخص شد که سه حالت چهار طرف، حالت مرکزی و یک طرف و حالت مرکزی و چهار طرف به ترتیب بهترین حالت ­ها برای خاموشی آتش محافظ ت­شده هستند که بعد از 22 ثانیه آتش را خاموش سازد. در مجموع، می­توان گفت که حالت مرکزی و یک طرف با داشتن تعداد نازل کمتر می‏تواند بهترین عملکرد را به دنبال داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of the effect of the water mist nozzle location on fire extinguishing system in shielded fire

نویسندگان [English]

  • Ghassem Heidarinejad 1
  • Hamid Tajaddod 1
  • Mohammad Safarzadeh 2
1 Faculty of Mechanical Engineering, Tarbiat Modares University
2 Faculty of Mechanical Engineering Tarbiat Modares University
چکیده [English]

When the fire is placed in the compartment, problems such as lack of access to the fire and lack of settling of spray particles lead to a delay in extinguishing the flame. Therefore, in this research, the growth and spread of the fire and its extinguishing with the water mist system with the effectiveness of the position of the nozzle in the shielded fire have been done using numerical study. The location of the effect of the water mist fire extinguishing system nozzle has been investigated under five case of four sides, central and one side, central and four sides, one side and central. The geometry of the research is a compartment without a roof and there is no door or window in the walls. The fuel source is located in the center of the compartment and there is a plate in the center of the room as a fire shield (protected fire plate) with a height of 50 cm from the floor of the room (on the fire). According to the results, it was found that the three cases of four sides, central mode and one side, and central mode and four sides respectively are the best modes for extinguishing the shielded fire, which extinguishes the fire after 22 seconds. In general, it can be said that the central and one-sided case with less number of nozzles can have the best performance.

کلیدواژه‌ها [English]

  • Numerical study
  • Water mist fire extinguishing system
  • Shielded fire
  • Computational fluid dynamics
  • Spray nozzle
[1]  Iranian Legal Medicine Organization. Available: http://www.lmo.ir/web_directory /54002. (accessed Mar. 20, 2023)
[2]  D. General, “UNITED Montreal Protocol on Substances that Deplete the Ozone Layer Focal points for licensing systems Note by the Secretariat Annex Focal points for licensing systems,” 2022.
[3]  S. N. A. Policy, “ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 82,” 2009.
[4]  G. Heidarinejad and E. Mousavi, “Numerical simulatoin of pool fire suppression using water mist systeminvestigating nozzle parameter effects,” mdrsjrns, vol. 17, no. 2, pp. 350–358, Mar. 2017. (in persian)
[5]  Z. Lin, R. Bu, J. Zhao, and Y. Zhou, “Numerical investigation on fire-extinguishing performance using pulsed water mist in open and confined spaces,” Case Stud. Therm. Eng., vol. 13, no. January, p. 100402, 2019, doi: 10.1016/j.csite.2019.100402.
[6]  G. Grant, J. Brenton, and D. Drysdale, “Fire suppression by water sprays,” Prog. Energy Combust. Sci., vol. 26, no. 2, pp. 79–130, 2000, doi: 10.1016/S0360-1285(99)00012-X.
[7]  W. Xishi, L. Guangxuan, Q. Jun, and F. Weicheng, “Experimental study on the effectiveness of the extinction of a pool fire with water mist,” J. Fire Sci., vol. 20, no. 4, pp. 279–295, 2002.
[8]  Y. P. Liu, X. S. Wang, P. Zhu, G. C. Li, X. M. Ni, and J. Zhang, “Experimental study on gas jet suppressed by water mist: A clean control technique in natural gas leakage incidents,” J. Clean. Prod., vol. 223, pp. 163–175, 2019.
[9]  Y. Liu, X. Wang, T. Liu, J. Ma, G. Li, and Z. Zhao, “Preliminary study on extinguishing shielded fire with water mist,” Process Saf. Environ. Prot., vol. 141, pp. 344–354, 2020.
[10]         P. E. Santangelo and P. Tartarini, “Full-scale experiments of fire suppression in high-hazard storages: A temperature-based analysis of water-mist systems,” Appl. Therm. Eng., vol. 45, pp. 99–107, 2012.
[11]         P. E. Santangelo, B. C. Jacobs, N. Ren, J. A. Sheffel, M. L. Corn, and A. W. Marshall, “Suppression effectiveness of water-mist sprays on accelerated wood-crib fires,” Fire Saf. J., vol. 70, pp. 98–111, 2014.
[12]         Y. Liu et al., “Laser-based measurement and numerical simulation of methane-air jet flame suppression with water mist,” Process Saf. Environ. Prot., vol. 148, pp. 1033–1047, 2021.
[13]         X. L. Zhu, G. Chen, Z. G. Wang, L. S. Wu, J. F. Luo, and X. S. Wang, “Extinguishment of a transformer fire with a long projection water mist system,” Fire Saf. J., vol. 130, no. February, 2022, doi: 10.1016/j.firesaf.2022.103603.
[14]         P. Valdes, T. Beji, and B. Merci, “CFD Study on the Interaction between Water Sprays and Longitudinal Ventilation in Tunnel Fires,” 2018.
[15]         J. Tu et al., “Effect of foam air mixing on flame intensification – comparative experimental study of foam and water sprays extinguishing transformer oil pool fire,” Fire Saf. J., vol. 133, no. August, p. 103664, 2022, doi: 10.1016/j.firesaf.2022.103664.
[16]         S. C. Kim and H. S. Ryou, “The effect of water mist on burning rates of pool fire,” Journal of Fire Sciences, vol. 22, no. 4. pp. 305–323, 2004. doi: 10.1177/0734904104041796.
[17]         A. Dasgotra, G. Rangarajan, and S. M. Tauseef, “CFD-based study and analysis on the effectiveness of water mist in interacting pool fire suppression,” Process Saf. Environ. Prot., vol. 152, pp. 614–629, 2021, doi: https://doi.org/10.1016/j.psep.2021.06.033.
[18]         M. Gupta, A. Pasi, A. Ray, and S. R. Kale, “An experimental study of the effects of water mist characteristics on pool fire suppression,” Exp. Therm. fluid Sci., vol. 44, pp. 768–778, 2013.
[19]         T. Sikanen, J. Vaari, S. Hostikka, and A. Paajanen, “Modeling and simulation of high pressure water mist systems,” Fire Technol., vol. 50, no. 3, pp. 483–504, 2014.
[20]         J. Lee and J. Moon, “Numerical analysis of the effect of horizontal distance between a water mist nozzle and ignition source on reduction in heat release rate,” Annals of Nuclear Energy, vol. 144. 2020. doi: 10.1016/j.anucene.2020.107560.
[21]         C. C. Ndubizu, R. Ananth, and P. A. Tatem, “Effects of droplet size and injection orientation on water mist suppression of low and high boiling point liquid pool fires,” Combust. Sci. Technol., vol. 157, no. 1–6, pp. 63–86, 2000, doi: 10.1080/00102200008947310.
[22]         Y. Liu, X. Wang, T. Liu, J. Ma, G. Li, and Z. Zhao, “Preliminary study on extinguishing shielded fire with water mist,” Process Saf. Environ. Prot., vol. 141, pp. 344–354, 2020, doi: 10.1016/j.psep.2020.05.043.
[23]         C. W. Chiu and Y. H. Li, “Full-scale experimental and numerical analysis of water mist system for sheltered fire sources in wind generator compartment,” Process Saf. Environ. Prot., vol. 98, pp. 40–49, 2015, doi: 10.1016/j.psep.2015.05.011.
[24]         Z. Q. Yang, S. H. Chen, and X. J. Zhu, “Simulation Research of the Suppressing Performance of Mist to Pool Fire in Room with Blocks,” in Advanced Materials Research, vol. 518, pp. 937–941, 2012.
[25]         H.-Z. Yu, X. Zhou, and J. Carpenter, “Physical scaling of water mist fire extinguishment in industrial machinery enclosures,” Fire Saf. J., vol. 91, pp. 596–605, 2017, doi: https://doi.org/10.1016/j.firesaf.2017.03.033.
[26]         H.-Z. Yu, “Froude-modeling-based general scaling relationships for fire suppression by water sprays,” Fire Saf. J., vol. 47, pp. 1–7, 2012, doi: https://doi.org/10.1016/j.firesaf.2011.09.006.
[27]         G. Maragkos and B. Merci, “Large Eddy Simulations of CH4 Fire Plumes,” Flow, Turbul. Combust., vol. 99, no. 1, pp. 239–278, 2017. doi: 10.1007/s10494-017-9803-4.
[28]         H. Pasdarshahri, G. Heidarinejad, and K. Mazaheri, “Development of compatible sub-grid scale model of les in numerical simulation of compartment fires,” Ph.D. dissertation, Dept. Mech. Eng, Tarbiat Modares University, Iran, 2013.
[29] Ghassem Heidarinejad, An Introduction to Turbulence, First Edition, Tarbiat Modares Publications, Iran, 2009. (in Persian)
[30]         K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overhold, “Sixth Edition Fire Dynamics Simulator User ’s Guide (FDS),” NIST Special Publication 1019, vol. Sixth Edit. p. 402, 2020. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1019.pdf
[31]         M. Beshir, “CFD Modeling of the Interaction between a Smoke plume and a Sprinkler Spray.” 2016.
[32]         M. Mapar, G. Heidarinejad, and H. Pasdarshahri, “Numerical Investigation of Two Simultaneous Fires in a Tunnel and Evaluation of the Obstructive Influence of Vehicles by Large Eddy Simulation” mdrsjrns, vol. 13, no. 15, pp. 10–22, Mar. 2014, [Online]. Available: http://mme.modares.ac.ir/article-15-1927-fa.html (in Persian)
[33]         Y. Cui and J. Liu, “Research progress of water mist fire extinguishing technology and its application in battery fires,” Process Saf. Environ. Prot., vol. 149, pp. 559–574, 2021, doi: 10.1016/j.psep.2021.03.003.
[34]         Kuswantoro and Y. S. Nugroho, “Experimental and numerical study of water mist fire suppression system effectiveness on shielded fire,” E3S Web Conf., vol. 67, pp. 1–6, 2018, doi: 10.1051/e3sconf/20186704039.
[35]         I. H. S. P. Catalog, “Spraying System Co.” pp. 1–12. [Online]. Available: https://www.spray.com/resources/catalogs/catalog75-hydraulic
[36]         J. Li, T. Beji, and B. Merci, “Preliminary Numerical Study of Fire-Induced Pressure Rise in a Passive House Compartment,” in Journal of Physics: Conference Series, 2018, vol. 1107, no. 4, p. 42026.
[37]         T. Beji, S. E. Zadeh, G. Maragkos, and B. Merci, “Influence of the particle injection rate, droplet size distribution and volume flux angular distribution on the results and computational time of water spray CFD simulations,” Fire Saf. J., vol. 91, pp. 586–595, 2017.