سنتز وتعیین مشخصات کاتالیست ترکیبی ZSM-5/Beta بدون استفاده از قالب و مدل سازی سینتیکی در فرآیند تبدیل متانول به بنزین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی دانشگاه تربیت مدرس

2 دانشگاه تربیت مدرس دانشکده شیمی

3 دانشگاه بین المللی امام خمینی، مرکز آموزش عالی فنی و مهندسی بویین زهرا

4 دانشکده مهندسی شیمی- دانشگاه تربیت مدرس

10.22034/jfnc.2022.328938.1302

چکیده

جستجو برای یافتن روش‌های جایگزین برای تولید سوخت‌های مهمی همچون بنزین بسیار اهمیت دارد. یکی از این فناوری‌ها، فرایند تبدیل متانول به بنزین بوده که در آینده جایگاه اقتصادی بالایی خواهد داشت. فعالیت زئولیت ZSM-5 که کاتالیست متداول این فرایند است با گذشت زمان و در اثر رسوب کک کاهش می ­یابد، در نتیجه تولید یک کاتالیست مقاوم در برابر کک از لحاظ صنعتی مورد توجه است. در این پژوهش، کارایی کاتالیست ترکیبی متشکل از زئولیت‌های ZSM-5 و Beta در بهبود توزیع محصولات مایع و مقدار رسوب کک مورد مطالعه قرار گرفته است. برای کاهش در هزینه ­ها، این دو زئولیت بدون استفاده از قالب و با استفاده از منبع طبیعی سبوس برنج سنتز شدند. نتایج نشان می‌دهد با ورود زئولیت بتا، اسیدیته کاتالیست ترکیبی کاهش داشته که این امر درکنار بهبود خواص ساختاری کاتالیست از طریق ایجاد حفرات مزو، موجب بهبود عملکرد در فرایند MTG شده است به‌گونه‌ای که بر روی این کاتالیست، زمان غیر‌فعال شدن، 60 درصد نسبت به کاتالیست ZSM-5 افزایش داشته است. همچنین بررسی سینتیک فرایند با استفاده از مدل توده‌ای کرامبک که شامل سه توده متانول/دی متیل اتر، اولفین‌های سبک و بنزین بوده است نشان داد نتایج حاصل از مدل دارای تطابق بسیار خوبی با نتایج حاصل از آزمایشگاه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and specification of template free ZSM-5/Beta composite catalyst and kinetic modeling for the methanol to gasoline (MTG) process

نویسندگان [English]

  • Faezeh Mirshafiee 1
  • Ramin Karimzadeh 2
  • Reza Khoshbin 3
  • zahra nargessi 4
1 Faculty of Chemical Engineering, Tarbiat Modares University
2 Tarbiat Modares University
3 Buin Zahra Higher Education Center of Engineering and Technology, Imam Khomeini International University , Qazvin, Iran.
4 Faculty of Chemical Engineering ,Tarbiat Modares University
چکیده [English]

The search for alternative ways to produce important fuels such as gasoline is crucial. One of these technologies is the process of converting methanol to gasoline, which will have a high economic position in the future. A common catalyst for the MTG process is the ZSM-5 zeolite, which, despite its many benefits, is rapidly deactivated. Therefore, the production of a suitable catalyst with high stability and resistance to coke deposition, is of great interest in the industry. In this study, the efficiency of a composite catalyst consisting of ZSM-5 and Beta zeolites in improving coke stability and distribution of liquid products has been studied. To reduce the costs, the two zeolites were synthesized using a template free method and using a cheap natural source like rice husk. The results showed that with the introduction of Beta zeolite, the acidity of the composite catalyst decreased, which in addition to improving the structural properties of the catalyst by creating mesopores, improved the performance in the MTG process so that on this catalyst, deactivation time increased by 60%. Moreover, the study of process kinetics using Crambeck model, which included 3 lumps of methanol / dimethyl ether, light olefins and gasoline, showed that the results of the model were in good agreement with the results of the laboratory datas.

کلیدواژه‌ها [English]

  • Composite catalyst
  • ZSM-5
  • beta
  • Template free
  • lumped kinetic
[1]  U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity, Angew. Chemie Int. Ed. 51 (2012) 5810–5831. https://doi.org/10.1002/anie.201103657.
[2]  Z. Liu, X. Dong, Y. Zhu, A.-H. Emwas, D. Zhang, Q. Tian, Y. Han, Investigating the Influence of Mesoporosity in Zeolite Beta on Its Catalytic Performance for the Conversion of Methanol to Hydrocarbons, ACS Catal. 5 (2015) 5837–5845. https://doi.org/10.1021/acscatal.5b01350.
[3]  L. Huang, W. Guo, P. Deng, Z. Xue, Q. Li, Investigation of Synthesizing MCM-41/ZSM-5 Composites, J. Phys. Chem. B. 104 (2000) 2817–2823. https://doi.org/10.1021/jp990861y.
[4]  Q. Zhao, B. Qin, J. Zheng, Y. Du, W. Sun, F. Ling, X. Zhang, R. Li, Core–shell structured zeolite–zeolite composites comprising Y zeolite cores and nano-β zeolite shells: Synthesis and application in hydrocracking of VGO oil, Chem. Eng. J. 257 (2014) 262–272. https://doi.org/https://doi.org/10.1016/j.cej.2014.07.056.
[5]  Z. Di, C. Yang, X. Jiao, J. Li, J. Wu, D. Zhang, A ZSM-5/MCM-48 based catalyst for methanol to gasoline conversion, Fuel. 104 (2013) 878–881. https://doi.org/https://doi.org/10.1016/j.fuel.2012.09.079.
[6]  J. Li, Y. Meng, C. Hu, H. Xiang, L. Cui, Z. Hao, Z. Zhu, Controlling reactive pathways in complex one-pot using novel shape-selective catalyst with multifunctional active-sites, Chem. Commun. 54 (2018). https://doi.org/10.1039/C8CC06087H.
[7]  H. Wu, F. Liu, Y. Yi, J. Cao, Catalytic and deactivated behavior of SAPO-34/ZSM-5 composite molecular sieve synthesized by in-situ two-step method, J. Mater. Res. Technol. 15 (2021) 1844–1853. https://doi.org/https://doi.org/10.1016/j.jmrt.2021.09.017.
[8]  B. Qin, X. Zhang, Z. Zhang, F. Ling, W. Sun, Synthesis, characterization and catalytic properties of Y-β zeolite composites, Pet. Sci. 8 (2011) 224–228. https://doi.org/10.1007/s12182-011-0139-8.
[9]  M. Bjørgen, S. Akyalcin, U. Olsbye, S. Benard, S. Kolboe, S. Svelle, Methanol to hydrocarbons over large cavity zeolites: Toward a unified description of catalyst deactivation and the reaction mechanism, J. Catal. - J CATAL. 275 (2010) 170–180. https://doi.org/10.1016/j.jcat.2010.08.001.
[10]         K. Zhang, S. Fernandez, J.A. Lawrence, M.L. Ostraat, Organotemplate-Free β Zeolites: From Zeolite Synthesis to Hierarchical Structure Creation, ACS Omega. 3 (2018) 18935–18942. https://doi.org/10.1021/acsomega.8b02762.
[11]         B. Xie, J. Song, L. Ren, Y. Ji, J. Li, F.-S. Xiao, Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite, Chem. Mater. 20 (2008) 4533–4535. https://doi.org/10.1021/cm801167e.
[12]         T.-L. Cui, J.-Y. He, M. Hu, C.-S. Liu, M. Du, Secondary template-free synthesis of hierarchical beta zeolite nanocrystals with tunable porosity and size, Microporous Mesoporous Mater. 309 (2020) 110448. https://doi.org/https://doi.org/10.1016/j.micromeso.2020.110448.
[13]         H. Zhang, C. Wu, M. Song, T. Lu, W. Wang, Z. Wang, W. Yan, P. Cheng, Z. Zhao, Accelerated synthesis of Al-rich zeolite beta via different radicalized seeds in the absence of organic templates, Microporous Mesoporous Mater. 310 (2021) 110633. https://doi.org/https://doi.org/10.1016/j.micromeso.2020.110633.
[14]         A.G. Gayubo, P.L. Benito, A.T. Aguayo, I. Aguirre, J. Bilbao, Analysis of kinetic models of the methanol-to-gasoline (MTG) process in an integral reactor, Chem. Eng. J. Biochem. Eng. J. 63 (1996) 45–51. https://doi.org/10.1016/0923-0467(95)03075-1.
[15]         C.D. Chang, A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, J. Catal. 47 (1977) 249–259. https://doi.org/10.1016/0021-9517(77)90172-5.
[16]         A.G. Gayubo, A.T. Aguayo, A.E. Sánchez Del Campo, A.M. Tarrío, J. Bilbao, Kinetic modeling of methanol transformation into olefins on a SAPO-34 catalyst, Ind. Eng. Chem. Res. 39 (2000) 292–300. https://doi.org/10.1021/ie990188z.
[17]         F.J. Keil, Methanol-to-hydrocarbons: Process technology, Microporous Mesoporous Mater. 29 (1999) 49–66. https://doi.org/10.1016/S1387-1811(98)00320-5.
[18]         R. Mihail, S. Straja, G. Maria, G. Musca, G. Pop, Kinetic model for methanol conversion to olefins, Ind. Eng. Chem. Process Des. Dev. 22 (1983) 532–538. https://doi.org/10.1021/i200022a031.
[19]         A.G. Gayubo, A.T. Aguayo, M. Castilla, M. Olazar, J. Bilbao, Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction-regeneration cycles in isothermal and adiabatic fixed bed reactor, Chem. Eng. Sci. 56 (2001) 5059–5071. https://doi.org/10.1016/S0009-2509(01)00194-4.
[20]         F. Mirshafiee, R. Karimzadeh, R. Khoshbin, Free template synthesis of novel hybrid MFI/BEA zeolite structure used in the conversion of methanol to clean gasoline: Effect of Beta zeolite content, Fuel. 304 (2021) 121386. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121386.
[21]         F. Meng, X. Wang, S. Wang, Y. Wang, Fluoride-treated HZSM-5 as a highly stable catalyst for the reaction of methanol to gasoline, Catal. Today. 298 (2017) 226–233. https://doi.org/https://doi.org/10.1016/j.cattod.2017.04.019.
[22]         M. Castilla, Simulation and Optimization of Methanol Transformation into Hydrocarbons in an Isothermal Fixed-Bed Reactor under Reaction-Regeneration Cycles, Ind. Eng. Chem. Res. (1998).
[23]         P.H. Schipper, F.J. Krambeck, A reactor design simulation with reversible and irreversible catalyst deactivation, Chem. Eng. Sci. 41 (1986) 1013–1019. https://doi.org/10.1016/0009-2509(86)87187-1.
[24]         R.K. Zahra Nargessi, Six-lumped kinetic model for catalytic cracking of heavy gas oil over zeolite Y; considering deactivation catalyst, Fuel Combust. 14 (2021) 47–60.
[25]         R. Khoshbin, R. Karimzadeh, The beneficial use of ultrasound in free template synthesis of nanostructured ZSM-5 zeolite from rice husk ash used in catalytic cracking of light naphtha: Effect of irradiation power, Adv. Powder Technol. 28 (2017) 973–982. https://doi.org/https://doi.org/10.1016/j.apt.2017.01.001.
[26]         Y. Kamimura, M. Shimomura, A. Endo, CO2 adsorption–desorption properties of zeolite beta prepared from OSDA-free synthesis, Microporous Mesoporous Mater. 219 (2016) 125–133. https://doi.org/https://doi.org/10.1016/j.micromeso.2015.07.033.
[27]         G. Majano, L. Delmotte, V. Valtchev, S. Mintova, Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template, Chem. Mater. 21 (2009) 4184–4191. https://doi.org/10.1021/cm900462u.
[28]         N. Taufiqurrahmi, A.R. Mohamed, S. Bhatia, Nanocrystalline zeolite beta and zeolite Y as catalysts in used palm oil cracking for the production of biofuel, J. Nanoparticle Res. 13 (2011) 3177–3189. https://doi.org/10.1007/s11051-010-0216-8.
[29]         M. Pan, J. Zheng, Y. Liu, W. Ning, H. Tian, R. Li, Construction and practical application of a novel zeolite catalyst for hierarchically cracking of heavy oil, J. Catal. 369 (2019) 72–85. https://doi.org/10.1016/j.jcat.2018.10.032.
[30]         J. Zheng, Q. Zeng, Y. Zhang, Y. Wang, J. ma, X. Zhang, S. Wanfu, R. Li, Hierarchical Porous Zeolite Composite with a Core−Shell Structure Fabricated Using β-Zeolite Crystals as Nutrients as Well as Cores, Chem. Mater. 22 (2010). https://doi.org/10.1021/cm101418z.
[31]         X. Wang, L. Zhao, S. Guo, Synthesis of Hβ (core)/SAPO-11 (shell) Composite Molecular Sieve and its Catalytic Performances in the Methylation of Naphthalene with Methanol, Bull. Korean Chem. Soc. 34 (2013) 3829–3834.
[32]         H. Huang, H. Zhu, Q. Zhang, C. Li, Effect of acidic properties of hierarchical HZSM-5 on the product distribution in methanol conversion to gasoline, Korean J. Chem. Eng. 36 (2019) 210–216. https://doi.org/10.1007/s11814-018-0209-3.
[33]         F. Mirshafiee, R. Karimzadeh, R. Khoshbin, Effect of Textural Properties of Y, ZSM-5 and Beta Zeolites on Their Catalytic Activity in Catalytic Cracking of a Middle Distillate Cut Named RCD, J. Oil, Gas Petrochemical Technol. 8 (2021) 60–74.
[34]         B. Song, Y. Li, G. Cao, Z. Sun, X. Han, The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction, Front. Chem. Sci. Eng. 11 (2017) 564–574. https://doi.org/10.1007/s11705-017-1654-y.
[35]         X. Jiang, X. Su, X. Bai, Y. Li, L. Yang, K. Zhang, Y. Zhang, Y. Liu, W. Wu, Conversion of methanol to light olefins over nanosized [Fe,Al]ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance, Microporous Mesoporous Mater. 263 (2018) 243–250. https://doi.org/10.1016/j.micromeso.2017.12.029.
[36]         Z. Hu, H. Zhang, L. Wang, H. Zhang, Y. Zhang, H. Xu, W. Shen, Y. Tang, Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction, Catal. Sci. Technol. 4 (2014) 2891–2895. https://doi.org/10.1039/C4CY00376D.
[37]         M. Sadrara, M.K. Khorrami, A.B. Garmarudi, J.T. Darian, F. Yaripour, Optimization of desilication parameters in fabrication of mesoporous ZSM-48 zeolite employed as excellent catalyst in methanol to gasoline conversion, Mater. Chem. Phys. 237 (2019) 121817. https://doi.org/https://doi.org/10.1016/j.matchemphys.2019.121817.
[38]         K.-Y. Lee, S.-W. Lee, S.-K. Ihm, Acid Strength Control in MFI Zeolite for the Methanol-to-Hydrocarbons (MTH) Reaction, Ind. Eng. Chem. Res. 53 (2014) 10072–10079. https://doi.org/10.1021/ie5009037.
[39]         F. Mirshafiee, R. Khoshbin, R. Karimzadeh, A green approach for template free synthesis of Beta zeolite incorporated in ZSM-5 zeolite to enhance catalytic activity in MTG reaction: Effect of seed nature and temperature, J. Clean. Prod. (2022) 132159. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.132159.
[40]         M. Li, Y. Huang, I. Oduro, Y. Fang, Selective conversion of small bio-oxygenates into high quality gasoline precursors over deactivated ZSM-5 in MTG reaction, Fuel Process. Technol. 149 (2016) 1–6. https://doi.org/10.1016/j.fuproc.2016.03.028.
[41]         H. Zaidi, K. Pant, Combined experimental and kinetic modeling studies for the conversion of gasoline range hydrocarbons from methanol over modified HZSM-5 catalyst, Korean J. Chem. Eng. 27 (2010) 1404–1411. https://doi.org/10.1007/s11814-010-0232-5.
[42]         P.L. Benito, A.G. Gayubo, A.T. Aguayo, M. Castilla, J. Bilbao, Concentration-Dependent Kinetic Model for Catalyst Deactivation in the MTG Process, Ind. Eng. Chem. Res. 35 (1996) 81–89. https://doi.org/10.1021/ie950124y.
[43]         S. Soltanali, R. Halladj, A. Rashidi, Z. Hajjar, The effect of HZSM-5 catalyst particle size on gasoline selectivity in methanol to gasoline conversion process, Powder Technol. 320 (2017) 696–702. https://doi.org/https://doi.org/10.1016/j.powtec.2017.07.096.
[44]         S. Aghamohammadi, M. Haghighi, M. Charghand, Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance, Mater. Res. Bull. 50 (2014) 462–475. https://doi.org/https://doi.org/10.1016/j.materresbull.2013.11.014.