مطالعه تجربی تشکیل هسته خوداشتعالی تصادفی در جت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده هوافضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشگاه صنعتی امیرکبیر

3 محقق

چکیده

شکل‌گیری هسته خوداشتعالی ناشی از جت گاز دما بالا با استفاده از روش تجربی انجام شده است. ترکیبات جت، محصولات احتراق غنی از سوخت هستند که ناشی از احتراق گاز طبیعی و هوا با نسبت هم ارزی غنی از سوخت در یک محفظه احتراق است. اختلاط جت دما بالا با ترکیبات قابل اشتعال با هوای محیط در شرایط محلی مناسبی می‌تواند منجربه خوداشتعالی شود. جت گاز داغ از یک طریق یک لوله با قطر 13 و 20 میلی‌متر به هوا تخلیه می‌شود. عدد رینولدز جت، نسبت هم ارزی محفظه احتراق و دمای جت متغیرهای اصلی در این مطالعه­اند. با استفاده از فیلم‌برداری سرعت‌بالا پدیده تشکیل هسته خوداشتعالی آشکارسازی شده است. مشاهدات نشان می­دهند که رفتار تشکیل شعله یا هسته خوداشتعالی و همچنین خاموشی و عدم وقوع اشتعال را می‌توان به پنج دسته طبقه‌بندی کرد: 1-بدون احتراق 2- شعله نفوذی چسبیده به نازل 3- شعله نفوذی برخاسته 4- شعله نفوذی ناپایدار 5- تشکیل هسته خوداشتعالی تصادفی . موضوع اصلی این آزمایش بررسی دسته پنجم است. عمر هسته خوداشتعالی، محل وقوع، و فرکانس شکل‌گیری با کمک تصویربرداری سرعت‌بالا و پردازش تصویر توسط کد توسعه‌یافته در آزمایشگاه احتراق دانشگاه امیرکبیر پس پردازش ‌شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Experimental Study of the Autoignition Kernel Formation in a Jet

نویسندگان [English]

  • Saeedreza Zadsirjan 1
  • Sadegh Tabejamaat 2
  • masoud eidiattarzadeh 3
1 َSchool of Aerospace engineering, Amirkabir university of technology, Tehran, Iran
2 School of Aerospace engineering, Amirkabir university of technology, tehran, Iran
3 school of aerospace engineering, amirkabir university of technology, tehran , iran
چکیده [English]

The non-premixed autoignition characteristic of a hot turbulent jet ejecting into the quiescent air was studied experimentally. The jet was the combustion product of fuel rich natural gas/air mixture burn in a thermally isolated combustion chamber. The combustion products discharge through a nozzle (13 and 20 mm in diameter) into the ambient air. The pre-chamber equivalence ratio, jet Reynolds number, and temperature are the governing parameters which are controlled by mass flow controller and thermocouples. The results of these experiments provide insight into the temporal and spatial non-premixed autoignition of the high-temperature combustible jet. Observations of ignition-flame formation –extinction behaviors of these jets are categorized into 1-no ignition 2- anchored diffusion flame 3- lifted diffusion flame 4- unstable diffusion flame 5- random autoignition kernel. The high-speed imaging helps to measure the location, lifetime and frequency of autoignition kernel using the in-house image processing developed code. Furthermore, the CH chemiluminescence imaging via an optical band-pass filter ensures that the jet composition is chemically quenched at the nozzle tip. The autoignition kernel can occur in radial and axial domain determined by the jet temperature and Reynolds number. The high-speed imaging shows that the most probable zone for autoignition kernel formation is on the jet axis and the jet Reynolds number has the major effect on axial distance. The jet temperature development merely extends this domain in the axial direction. Moreover, the temperature directly affects the lifetime and frequency of autoignition kernel.
.

کلیدواژه‌ها [English]

  • Autoignition kernel
  • Turbulent jet
  • Experimental test
  • Ignition
  • Extinction
[1]     K. Lee, H. Kim, P. Park, S. Yang, and Y. Ko, “CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames,” Fuel, 106, 2013, pp. 682–689.
[2]     S. Ji,  X. Lan, J. Lian, H. Xu, Y.Wang, Y. Cheng and Y. Liu , “Influence of Ozone on Ignition and Combustion     Performance of a Lean Methane/Air Mixture,” Energy & Fuels, 31, 2017, pp. 14191–14200.
[3]     J. P. Bhasker and E. Porpatham, “Effects of compression ratio and hydrogen addition on lean combustion characteristics and emission formation in a Compressed Natural Gas fuelled spark ignition engine,” Fuel, 208, 2017, pp. 260–270.
[4]     G. Li and B. Yao, “Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine,” Appl. Therm. Eng, 28, 2008, pp. 611–620.
[5]     Y. Chen, Y. Wang, and R. Raine, “Correlation between cycle-by-cycle variation, burning rate, and knock: A statistical study from PFI and DISI engines,” Fuel, 206, 2017, pp. 210–218.
[6]     F. Ma, S. Ding, Y. Wang, Y. Wang, J. Wang, and S. Zhao, “Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas S.I. engine with hydrogen enrichment,” International Journal of Hydrogen Energy, 33, 2008, pp. 7245–7255.
[7]     M. Reyes, A. Melgar, A. Pérez, and B. Giménez, “Study of the cycle-to-cycle variations of an internal combustion engine fuelled with natural gas/hydrogen blends from the diagnosis of combustion pressure,” International Journal of Hydrogen Energy, 38, 2013, pp. 15477–15487.
[8]     S. Biswas and L. Qiao, “Prechamber Hot Jet Ignition of Ultra-Lean H2/Air Mixtures: Effect of Supersonic Jets and Combustion Instability,” SAE International Journal of Engines, 9, 2016, pp. 1584–1592.
[9]     S. Biswas and L. Qiao, “A Numerical Investigation of Ignition of Ultra-Lean Premixed H2/Air Mixtures by Pre-Chamber Supersonic Hot Jet,” SAE International Journal of Engines, 10, 2017, pp. 2231–2247.
[10]   E. Murase, S. Ono, K. Hanada, and A. K. Oppenheim, “Initiation of Combustion in Lean Mixtures by Flame Jets,” Combustion Science and Technology, 113, 1996, pp. 167–177.
[11]   M. P. Lee, B. K. Mcmillin, J. L. Palmer, and R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic crossflow,” Journal of Propulsion and Power, 8,1992, pp. 729–735.
[12]   C. N. Markides and E. Mastorakos, “An experimental study of hydrogen autoignition in a turbulent co-flow of heated air,”  Proceedings of the Combustion Institute, 30, 2005, pp. 883–891.
[13]   N. Wang, J. Liu, W. L. Chang, and C. F. Lee, “A numerical study on effects of pre-chamber syngas reactivity on hot jet ignition,” Fuel, 234, 2018, pp. 1–8.
[14]   H. Phillips, “Ignition in a transient turbulent jet of hot inert gas,” Combustion and Flame, 19, 1972, pp. 187–195.
[15]   S. Yamaguchi, N. Ohiwa, and T. Hasegawa, “Ignition and burning process in a divided chamber bomb,” Combust. Flame, 59, No. 2, 1985, pp. 177–187.
[16]   G. Gentz et al., “A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine,” Applied Thermal Engineering, 81, 2015, pp. 399–411.
[17]   G. Gentz, B. Thelen, P. Litke, J. Hoke, and E. Toulson, “Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine,” SAE International Journal of Engines, 8, No. 2, 2015, pp. 538–546.
[18]   M. Gholamisheeri, B. C. Thelen, G. R. Gentz, I. S. Wichman, and E. Toulson, “Rapid compression machine study of a premixed, variable inlet density and flow rate, confined turbulent jet,” Combustion and Flame, 169, 2016, pp. 321–332.
[19]   R. P. Roethlisberger and D. Favrat, “Investigation of the prechamber geometrical configuration of a natural gas spark ignition engine for cogeneration: part I. Numerical simulation,” International Journal of Thermal Science, 42, No. 3, 2003, pp. 223–237.
[20]   P. M. Allison, M. de Oliveira, A. Giusti, and E. Mastorakos, “Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure,” Fuel, 230, 2018, pp. 274–281.
[21]   G. Gentz, M. Gholamisheeri, and E. Toulson, “A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization,” Applied Energy, 189, 2017, pp. 385–394.
[22]   H. Wu, L. Wang, X. Wang, B. Sun, Z. Zhao, C. Lee, F. Liu, “The effect of turbulent jet induced by pre-chamber sparkplug on combustion characteristics of hydrogen-air pre-mixture,” International Journal of Hydrogen Energy, 43, No 16, 2018, pp. 8116–8126.

[23]   R. Sadanandan, D. Markus, R.Schieß, U. Maas, J.Olofsson, H. Seyfried, M. Richter, M. Aldén, “Detailed investigation of ignition by hot gas jets,” Proceedings of the Combustion Institute, 31, No. 1, 2007, pp. 719–726.

 [24]  S. Biswas, S. Tanvir, H. Wang, and L. Qiao, “On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion,” Applied Thermal Engineering, 106, 2016, pp. 925–937.
 [25]   S. Biswas and L. Qiao, “Ignition of ultra-lean premixed H2/air using multiple hot turbulent jets generated by pre-chamber combustion,” Applied Thermal Engineering, 132, 2018, pp. 102–114.
 [26]  J. Carpio, I. Iglesias, M. Vera, A. L. Sánchez, and A. Liñán, “Critical radius for hot-jet ignition of hydrogen–air mixtures,” International Journal of Hydrogen Energy, 38, No. 7, 2013, pp. 3105–3109.
[27]   A. Ghorbani, G. Steinhilber, D. Markus, and U. Maas, “Numerical Investigation of Ignition in a Transient Turbulent Jet by Means of a PDF Method,” Combustion Science and Technology, 186, No. 10–11, 2014, pp. 1582–1596.
[28]   C. Markides, N. Mastorakos, “Experimental Investigation of the Effects of Turbulence and Mixing on Autoignition Chemistry,” Flow Turbulence and Combustion, 86, 2011, pp. 585-608.
[29]   N. Wang, J. Liu, W. L. Chang, and C. F. Lee, “Ignition kinetics of a homogeneous hydrogen/air mixture using a transient hot jet,” International Journal of Hydrogen Energy, 43, No. 33, 2018, pp. 16373–16385.
[30]   I. Wierzba and V. Kilchyk, “Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures,” International Journal of  Hydrogen Energy, 26, No. 6, 2001, pp. 639–643.
[31]   K. M. Lyons, “Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments,” Progress in Energy and Combustion Science, 33, No. 2, 2007, pp. 211–231.
[32]   E. Oldenhof, M. J. Tummers, E. H. van Veen, and D. J. E. M. Roekaerts, “Transient response of the Delft jet-in-hot coflow flames,” Combustion Flame, 159, No. 2, 2012, pp. 697–706.