استفاده از مدل احتراقی تولید‏فلیملت‏منیفولد در شبیه‏سازی گردابه‏های بزرگ آتش استخری و مقایسه با نتایج مدل احتراقی دیگر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه تربیت مدرس

10.22034/jfnc.2022.283286.1276

چکیده

از میان مطالعات تجربی و عددی که در زمینه‌ی آتش انجام‌شده است، آتش استخری بیش از سایر سناریوهای آتش، مورد استقبال قرارگرفته است. در این مقاله، به‌منظور بررسی تأثیر مدل‏ های احتراقی مختلف بر نتایج شبیه‏ سازی آتش، آتش استخری مطالعه می‏شود. به این منظور مدل احتراقی تولید فلیملت منیفولد به­ کار گرفته شده و نتایج آن با سه مدل احتراقی سینتیک بسیار سریع، اضمحلال گردابه و مفهوم اضمحلال گردابه مقایسه می ‏شود. با مقایسه‏ ی نتایج متوسط سرعت و نوسانات آن، مشاهده می‌شود که دقت مدل احتراقی تولید فلیملت منیفولد، بدون در نظر گرفتن اثر تشعشع، در پیش‌بینی پدیده‏ ی پوفینگ و فرکانس آن، متوسط مجذور نوسانات سرعت عمودی و انرژی جنبشی اغتشاشی بهتر از سایر مدل‌های احتراقی است. به‌عنوان‌مثال، نتایج مدل احتراقی تولید فلیملت منیفولد در پیش‏بینی فرکانس پوفینگ کمتر از ۳ درصد، خطای نسبی با نتایج تجربی دارد؛ اما سایر مدل‏ های احتراقی بیشتر از ۱۰ درصد خطا دارند. در پیش‌بینی میدان سرعت، مدل احتراقی اضمحلال گردابه، دقت بالاتری نسبت به مدل تولید فلیملت منیفولد دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Large Eddy Simulation of Pool Fire using FGM Combustion Model and Compared with Other Combustion Models

نویسندگان [English]

  • mohammad safarzadeh
  • ghassem Heidarinejad
  • Hadi Pasdarshahri
tarbiat modares university
چکیده [English]

Among the experimental and numerical studies conducted in the field of fire, the pool fire has been welcomed more than other fire scenarios. In this paper, pool fire is studied to investigate the effect of different combustion models on the fire simulation. For this purpose, the combination model of flamelet generated manifold (FGM) is used and its results are compared with three infinite fast chemistry (IFC), eddy dissipation (EDM) and eddy dissipation concept (EDC) combustion models. By comparing the mean velocity results and its fluctuations, it is observed that the accuracy of the FGM combination model, regardless of radiation effect, is better than other combustion models in predicting of the puffing phenomenon and its frequency, the mean square of vertical velocity, mean turbulence kinetic energy. For example, the FGM combustion model has less than 3% relative error with experimental results in prediction of the puffing frequency; but other combustion models are more than 10% relative error. In the prediction of the mean velocity field, the EDM combustion model has a higher accuracy than the FGM.

کلیدواژه‌ها [English]

  • Combustion model
  • Large Eddy Simulation
  • Flamelet generated manifold
  • Eddy dissipation
  • Infinite chemistry
  1. M. Safarzadeh, G. Heidarinejad, and H. Pasdarshahri, “Evaluation of LES sub-grid scale models and time discretization schemes

       for prediction of convection effect in a buoyant pool fire,” Heat and Mass Transfer, 57, 2020, pp. 1-16.

  1. N. T. Wimer, M. S. Day, C. Lapointe, A. S. Makowiecki, J. F. Glusman, J. W. Daily, et al, “High-Resolution Numerical Simulations

      of a Large-Scale Helium Plume Using Adaptive Mesh Refinement,” arXiv preprint arXiv:1901.10554, 2019

  1. O. Ahmadi, S. B. Mortazavi, H. Pasdarshahri, H. A. Mahabadi, and K. Sarvestani, “Modeling of boilover phenomenon consequences: Computational fluid dynamics (CFD) and empirical correlations,” Process Safety and Environmental Protection, 129, 2019, pp. 25-39.
  2. O. Ahmadi, S. B. Mortazavi, H. Pasdarshahri, and H. A. Mohabadi, “Consequence analysis of large-scale pool fire in oil storage terminal based on computational fluid dynamic (CFD),” Process Safety and Environmental Protection, 123, 2019, pp. 379-389.
  3. W. Chow and R. Yin, “A new model on simulating smoke transport with computational fluid dynamics,” Building and Environment, 39, 2004, pp. 611-620.
  4. K. McGrattan, R. Rehm, and H. Baum, “Fire-driven flows in enclosures,” Journal of Computational Physics, 110, 1994, pp. 285-291.
  5. H. Xue, J. Ho, and Y. Cheng, “Comparison of different combustion models in enclosure fire simulation,” Fire Safety Journal, 36, 2001, pp. 37-54.
  6. Y.-L. Huang, H.-R. Shiu, S.-H. Chang, W.-F. Wu, and S.-L. Chen, “Comparison of combustion models in cleanroom fire,” Journal of Mechanics, 24, 2008, pp. 267-275.
  7. G. Heidarinejad, H. PasdarShahri, and m. safarzadeh, “The Importance of Using the Combustion and Sub-grid Model in Modelling of Large Pool Fire Flow Field,” Amirkabir Journal of Mechanical Engineering, 52, 2019, pp. 2425-2442. (in Persian)
  8. G. Yeoh, R. Yuen, S. Chueng, and W. Kwok, “On modelling combustion, radiation and soot processes in compartment fires,” Building and Environment, 38, 2003, pp. 771-785.
  9. S. Cheung, G. H. Yeoh, A. Cheung, R. Yuen, and S. M. Lo, “Flickering behavior of turbulent buoyant fires using large-eddy simulation,” Numerical Heat Transfer, Part A: Applications, 52, 2007, pp. 679-712.
  10. A. Yuen, T. Chen, C. Wang, W. Wei, I. Kabir, J. Vargas, et al., “Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites,” Composites Part B: Engineering, vol. 182, 2020, p. 107619.
  11. A. Yuen, G. Yeoh, V. Timchenko, S. Cheung, and T. Barber, “Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment,” International Journal of Heat and Mass Transfer, 96, 2016, pp. 171-188.
  12. V. M. Le, A. Marchand, S. Verma, R. Xu, J. White, A. Marshall, et al., “Simulations of a turbulent line fire with a steady flamelet combustion model coupled with models for non-local and local gas radiation effects,” Fire Safety Journal, 106, 2019, pp. 105-113.
  13. C. Han and H. Wang, “A comparison of different approaches to integrate flamelet tables with presumed-shape PDF in flamelet models for turbulent flames,” Combustion Theory and Modelling, 21, 2017, pp. 603-629.
  14. A. C. Y. Yuen, G. H. Yeoh, V. Timchenko, S. C. P. Cheung, and T. J. Barber, “Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment,” International Journal of Heat and Mass Transfer, 96, 2016, pp. 171-188.
  15. H. Pasdarshahri, G. Heidarinejad, and K. Mazaheri, “Large eddy simulation on one-meter methane pool fire using one-equation sub-grid scale model,” 7th Mediterranean Combustion Symposium, Sardinia, Italy, 2011.
  16. B. F. Magnussen and B. H. Hjertager, “On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion,” international Symposium on Combustion,16, 1977, pp. 719-729.
  17. D. Spalding, “Mixing and chemical reaction in steady confined turbulent flames,” International Symposium on combustion, 1971, 13, pp. 649-657.
  18. G. Maragkos, T. Beji, and B. Merci, “Advances in modelling in CFD simulations of turbulent gaseous pool fires,” Combustion and Flame, 181, 2017, pp. 22-38.
  19. J. v. Oijen and L. D. Goey, “Modelling of premixed laminar flames using flamelet-generated manifolds,” Combustion Science and Technology, 161, 2000, pp. 113-137.
  20. N. Peters, “Laminar flamelet concepts in turbulent combustion,” International Symposium on Combustion, 21, 1988, pp. 1231-1250.
  21. S. Pohl, G. Frank, M. Pfitzner, J. Matheis, and S. Hickel, “Flamelet generated manifolds for modeling turbulent non-premixed combustion in OpenFOAM,” SFB/TRR40 Annual Report, 2014, pp.209-216,.
  22. M. Safarzadeh, G. Heidarinejad, and H. Pasdarshahri, “Numerical Investigation of Compartment Fire under Maximum and Minimum of Natural Ventilation using FGM Combustion Model,” Amirkabir Journal of Mechanical Engineering, 53, 2021, pp. 1-15. (in Persian)
  23. H. Atoof and M. D. Emami, “Numerical simulation of laminar premixed CH4/air flame by flamelet-generated manifolds: A sensitivity analysis on the effects of progress variables,” Journal of the Taiwan Institute of Chemical Engineers, 60, 2016, pp. 287-293.
  24. S. Zadsirjan, S. Tabejamaat, E. Abtahizadeh, and J. van Oijen, “Large eddy simulation of turbulent diffusion jet flames based on novel modifications of flamelet generated manifolds,” Combustion and Flame, 216, 2020, pp. 398-411.
  25. S. C. P. Cheung and G. H. Yeoh, “A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire,” International Journal of Thermal Sciences, 48, 2009, pp. 2187-2202.
  26. M. Safarzadeh, G. Heidarinejad, and H. Pasdarshahri, “Evaluation of the efficiency of eddy dissipation combustion model based on large eddy simulation in large scale pool fire modeling,” 27th Annual International Conference of the Iranian Society of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran 2019. (in Persian)
  27. S. Tieszen, T. O’hern, R. Schefer, E. Weckman, and T. Blanchat, “Experimental study of the flow field in and around a one meter diameter methane fire,” Combustion and Flame, 129, 2002, pp. 378-391.
  28. G. Yeoh, S. Cheung, J. Tu, and T. Barber, “Comparative Large Eddy Simulation study of a large-scale buoyant fire,” Heat and mass transfer, 47, 2011, pp. 1197-1208.
  29. G. Maragkos and B. Merci, “Large Eddy simulations of CH4 fire plumes,” Flow, Turbulence and Combustion, 99, 2017, pp. 239-278.
  30. J. White, S. Vilfayeau, A. Marshall, A. Trouve, and R. J. McDermott, “Modeling flame extinction and reignition in large eddy simulations with fast chemistry,” Fire safety journal, 90, 2017, pp. 72-85.
  31. S. De, A. K. Agarwal, S. Chaudhuri, and S. Sen, Modeling and simulation of turbulent combustion, Singapore, Springer, 2018.
  32. R. O. Fox and A. Varma, Computational models for turbulent reacting flows: United States, Cambridge Univ. Press, 2003.
  33. S. C. Cheung and G. Yeoh, “A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire,” International Journal of Thermal Sciences, 48, 2009, pp. 2187-2202.
  34. P. E. DesJardin, T. M. Smith, and C. J. Roy, “Numerical simulations of a methanol pool fire,” Proc. 39th Aerospace Sciences Meeting and Exhibit, USA, 2001.
  35. R. Demarco, Modelling thermal radiation and soot formation in buoyant diffision flames, PhD Thesis, Aix-Marseille University, France, 2012.
  36. G. Heskestad, “Engineering relations for fire plumes,” Fire Safety Journal, 7, 1984, pp. 25-32.
  37. E. E. Zukoski, T. Kubota, and B. Cetegen, “Entrainment in fire plumes,” Fire Safety Journal, 3, 1981, pp. 107-121.
  38. B. K. Dhurandher, R. Kumar, A. K. Dhiman, A. Gupta, and P. K. Sharma, “An experimental study of vertical centreline temperature and velocity profile of buoyant plume in cubical compartment,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 2017, pp. 1813-1822.