بررسی تاثیر نانو ذرات Co2O3، ZnO و Fe3O4 بر بازده متان طی فرآیند هضم بی-هوازی پسماند آلی جامد شهری با استفاده از آزمون BMP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 مهندسی بیوسیستم، دانشگاه بوعلی سینا، همدان

3 استادیار، مهندسی بیوسیستم، دانشگاه بوعلی سینا، همدان

4 مهندسی بیو سیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

10.22034/jfnc.2021.282855.1275

چکیده

هضم بی‌هوازی (AD) می‌تواند روشی مناسب برای مدیریت و به ­دست­ آوردن انرژی باشد. در پژوهش حاضر، تأثیر افزودن نانوذرات روی (ZnO)، نانوذرات اکسید آهن (Fe3O4) و نانوذرات اکسید کبالت (Co2O3) بر تولید بیوگاز و بیومتان حاصل از هضم بی‌هوازی پسماند آلی جامد شهری و کود گاوی مورد بررسی و مطالعه قرار گرفت. نتایج نشان دادند که استفاده از نانوذرات یا عناصر کم‌مصرف و ضروری با غلظت‌های بهینه در بستر هاضم به‌طور بالقوه باعث ایجاد اثراتی مثبت بر پایداری فرایند هضم، کاهش بیشتر ناخالصی‌ها و گازهای آلاینده موجود در بیوگاز و تولید بیوگاز بیشتر شده است. نانوذرات روی (ZnO)، به­ دلیل اثر سمی ­بودن آن روی باکتری‌های بی­ هوازی، در روزهای اول، به‌طور مستقیم روی سمیت باکتری ­های بی­ هوازی تأثیر گذاشت و باعث کاهش بیوگاز تولیدی شد. اما، بعد از چند روز، باکتری‌های بی­ هوازی خود را با اثر سمی ­بودن مواد اضافه‌شده سازگار کردند و قادر به زنده­ ماندن در چنین شرایطی بودند و درنتیجه بیوگاز تولیدی روند افزایشی پیدا کرد. فرایند هضم بی‌هوازی وابسته به نانوذرات است. افزایش نانوذرات اکسید آهن (Fe3O4)، نانوذرات روی (ZnO) و کاهش نانوذرات اکسید کبالت (Co2O3) تأثیر مثبتی بر روی نرخ تولید بیوگاز و بازده متان داشت. بهترین غلظت نانوذرات برای نرخ تولید بیوگاز و بازده متان حداکثر، برای نانوذرات اکسید آهن (Fe3O4) 20 تا 28    میلی ­گرم، برای نانوذرات روی (ZnO) 0.8 تا 1.5 و برای نانوذرات اکسید کبالت (Co2O3)  0.25 تا 0.35 میلی‌گرم است. بیشترین بیوگاز و متان تولیدی در طول فرایند هضم در همین نقاط ذکرشده به ­دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effects of Co2O3, and ZnO, and Fe3O4 Nanoparticles on Methane yield during anaerobic Co-digestion of municipal organic solid waste using BMP Test.

نویسندگان [English]

  • Sirvan Khaledian 1
  • Hossein Haji Agha Alizade 2
  • Majid Rasouli 3
  • Behdad Shadidi 4
1 Department of Biosystems Engineering, Bu-Ali Sina University, Hamedan, Iran,
2 Department of Biosystems Engineering, Bu-Ali Sina University, Hamedan, Iran
3 Department of Biosystems Engineering, Bu-Ali Sina University, Hamedan, Iran,
4 Department of Biosystems Engineering, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

The use of organic fraction municipality solid waste (OFMSW) in the process of anesthetic digestion (AD) can be a good way to manage and extract energy. In the present study, the effect of adding ZnO nanoparticles (ZnO) nanoparticles and iron oxide nanoparticles (Fe3O4) and cobalt oxide nanoparticles (Co2O3) on the production of biomass and biomass from anaerobic digestion organic fraction municipality solid waste (OFMSW) and cattle manure (CM) reviewed and studied. The results showed that using nanoparticles with low and essential nutrients with optimal concentrations in digesters could potentially have positive effects on the stability of the digestion process, the reduction of further impurities and pollutants in the biogas, reduction of volatile fatty acids (VFA) and biogas production has been increased. Due to the toxicity of ZnO nanoparticles on bacterial bacteria in the first days, it directly affected the toxicity of bacterial bacteria and reduced the production of biogas. But after a few days, bacterial bacteria became familiar with the toxicity of added substances and were able to survive in such conditions, and increased the production of biogas. The anaerobic digestion process is highly dependent on nanoparticles. Increasing the iron oxide nanoparticles (Fe3O4) and ZnO nanoparticles (ZnO) and reducing the cobalt oxide nanoparticles (Co2O3) have a positive effect on the biogas production rate and methane yield. The best concentration of nanoparticles for the biogas production rate and maximum methane yields are 20-28 milligrams of iron oxide nanoparticles (Fe3O4) for zinc (ZnO) 0.8 to 1.5 nanoparticles and 0.25 to 0.35 milligrams for cobalt oxide nanoparticles (Co2O3). Most produced biogas and methane were obtained during the digestion process at the points mentioned.
.

کلیدواژه‌ها [English]

  • Keywords: Nanoparticles
  • anaerobic digestion
  • Biogas
  • organic fraction municipality solid waste
  • Methane
  • Response sesurface methodology
  1. K. Mahla, S. M. Safieddin Ardebili, H. Sharma, A. Dhir, G. Goga and H. Solmaz, “Determination and utilization of optimal diesel/n-butanol/biogas derivation for small utility dual fuel diesel engine,” Fuel, 289, 2021, 119913, in press.
  2. M. Safieddin Ardebili, “Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran,” Renewable Energy, 154, 2020, pp. 29-37.
  3. Carrere, Y. Rafrafi, A. Battimelli, M. Torrijos, J. P. Delgenes and C. Motte, “Improving methane production during the codigestion of waste-activated sludge and fatty wastewater: Impact of thermo-alkaline pretreatment on batch and semi-continuous processes,” Chemical Engineering Journal, 210, 2012, pp. 404-409.
  4. Y. Choong, I. Norli, A. Z. Abdullah and M. F. Yhaya, “Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review,” Bioresour Technol, 209, 2016, pp. 369-379.
  5. Abdelsalam, M. Samer, Y. Attia, M. Abdel-Hadi, H. Hassan and Y. Badr, “Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry,” Energy Conversion and Management, 141, 2017, pp. 108-119.
  6. Hagos, J. Zong, D. Li, C. Liu and X. Lu, “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives,” Renewable and Sustainable Energy Reviews, 76, 2017, pp. 1485-1496.
  7. Abdelsalam, M. Samer, Y. Attia, M. Abdel-Hadi, H. Hassan and Y. Badr, “Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure,” ENERGY, 120, 2017, pp. 842-853.
  8. Mao, Y. Feng, X. Wang and G. Ren, “Review on research achievements of biogas from anaerobic digestion,” Renewable and Sustainable Energy Reviews, 45, 2015, pp. 540-555.
  9. Boulanger, E. Pinet, M. Bouix, T. Bouchez and A. A. Mansour, “Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential,” Waste Management, 32, No. 12, 2012, pp. 2258-2265.
  10. Kato, K. Hashimoto and K. Watanabe, “Methanogenesis facilitated by electric syntrophy via (semi) conductive iron‐oxide minerals,” Environmental microbiology, 14, No. 7, 2012, pp. 1646-1654.
  11. Zhang, J. Keller and Z. Yuan, “Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing,” Water research, 43, No. 17, 2009, pp. 4123-4132.
  12. Karri, R. Sierra‐Alvarez and J. A. Field, “Zero valent iron as an electron‐donor for methanogenesis and sulfate reduction in anaerobic sludge,” Biotechnology and Bioengineering, 92, No.7, 2005, pp. 810-819.
  13. Li, S. Chen and X. Li, “Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system,” Applied biochemistry and biotechnology, 160, No. 2, 2010, pp. 643-654.
  14. Sreekrishnan, S. Kohli and V. Rana, “Enhancement of biogas production from solid substrates using different techniques––a review,” Bioresource technology, 95, No. 1, 2004, pp. 1-10.
  15. Rasouli, Y. Ajabshirchi, S.M. Mousavi, M. Nosrati and S. Yaghmaei, “Process optimization and modeling of anaerobic digestion of cow manure for enhanced biogas yield in a mixed plug-flow reactor using response surface methodology,” Biosciences Biotechnology Research Asia, 12, 2015, pp. 2333-2344.
  16. Romero-Güiza, J. Vila, J. Mata-Alvarez, J. Chimenos and S. Astals, “The role of additives on anaerobic digestion: a review,” Renewable and Sustainable Energy Reviews, 58, 2016, pp. 1486-1499.
  17. A. Ganzoury and N. K. Allam, “Impact of nanotechnology on biogas production: a mini-review,” Renewable and Sustainable Energy Reviews, 50, 2015, pp. 1392-1404.
  18. Luna-delRisco, K. Orupõld and H. C. Dubourguier, “Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion,” Journal of Hazardous Materials, 189, No. 12, 2011, pp. 603-608.
  19. Zhang, G. Xiao, L. Peng, H. Su and T. Tan, “The anaerobic co-digestion of food waste and cattle manure,” Bioresource technology, 129, 2013, pp. 170-176.
  20. Zhang, H. Su, J. Baeyens and T. Tan, “Reviewing the anaerobic digestion of food waste for biogas production,” Renewable and Sustainable Energy Reviews, 38, 2014, pp. 383-392.
  21. Zhang, Y. W. Lee and D. Jahng, “Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements,” Bioresource technology, 102, No. 8, 2011, pp. 5048-5059.
  22. İ. Temizel, S. M. Emadian, M. Di Addario, T. T. Onay, B. Demirel, N. K. Copty and T. Karanfil, “Effect of nano-ZnO on biogas generation from simulated landfills,” Waste Management, 63, 2017, pp. 18-26.
  23. Zhang, G. Zeng, G. Zhang, Y. Li, B. Zhang and M. Fan, “Anaerobic co-digestion of biosolids and organic fraction of municipal solid waste by sequencing batch process,” Fuel processing technology, 89, No. 4, 2008, pp. 485-489.
  24. Stoddard, “Communal Polyethylene Biogas Systems: Experiences from on-farm research in rural West Java,” PhD dissertation, Sweden, Uppsala University, Global Energy Systems, 2010.
  25. J. Anderson and P. J. Whitcomb, DOE simplified: practical tools for effective experimentation,” CRC press, Boca Raton, Florida, United States, 2017.
  26. Liu, Y. Zhang, X. Quan, Y. Li, Z. Zhao, X. Meng and S. Chen, “Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment,” Chemical Engineering Journal, 192, 2012, pp. 179-185.