سنتز نانوکاتالیست NiMo بر پایه گِل قرمز و تقویت شده با زیرکونیا به روش تلقیح برای استفاده در فرایند هیدرودی‌سولفوریزاسیون برش‌های نفتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس دانشکده شیمی

2 دانشجوی دکتری، دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران،

10.22034/jfnc.2019.94006

چکیده

 در سال­های اخیر، تحقیقات متعددی بر روی استفاده مجدد از مواد زائد مانند گِل قرمز انجام گرفته است،   زیرا حاوی اجزاء باارزش مانند آلومینا، سیلیکا و اکسیدآهن است و می­تواند به‌عنوان پایه کاتالیست­های فرایند هیدرودی­سولفوریزاسیون به‌کار گرفته شود. کاتالیست­های متداول این فرایند، NiMo/Al2O3 و CoMo/Al2O3 هستند که به‌منظور افزایش فعالیت آن­ها و درنتیجه تولید سوخت تمیزتر، تقویت‌کننده­هایی مانند زیرکونیا به کاتالیست افزوده می‌شود. برای نیل به این هدف، در این مقاله کاتالیست NiMo بر پایه گِل قرمز با درصدهای متفاوت زیرکونیا، به روش تلقیح سنتز شده است. برای بررسی خواص فیزیکی و ساختاری آن­ها از آنالیزهای XRD، FESEM، BET و FTIR استفاده شده است. نتایج حاصله، حاکی از این است که افزودن تقویت‌کننده زیرکونیا باعث توزیع یکنواخت ذرات روی سطح پایه، افزایش فاز فعال و کاهش تشکیل اسپینل نیکل در کاتالیست می­شود. ارزیابی عملکرد این نانوکاتالیست نشان‌دهنده‌ کاهش قابل توجه ترکیبات گوگرددار موجود در دو خوراک ایزودیزل و دیزل سبک، درنتیجه افزودن مقدار بهینه زیرکونیا به کاتالیست­های NiMo بر پایه گِل قرمز فعال شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesize of Zirconia-Promoted NiMo Nanocatalyst supported on red mud via impregnation method used in Hydrodesulfurization of oil cuts

نویسندگان [English]

  • Ramin Karimzadeh 1
  • mitra ebrahiminejad 2
1 Tarbiat Modares University
2
چکیده [English]

various oxides like iron oxides, alumina and silica that can be used as support for hydrodesulfurization catalysts. The common hydrodesulfurization catalysts are CoMo/Al2O3 and NiMo/Al2O3. Addition of secondary promoter such as zirconia is proposed as a useful solution for increasing catalyst activity and production of standard fuels. In this paper, NiMo nanocatalyst supported on activated red mud was prepared by impregnation method containing various amounts of Zr promoter and its catalytic performance was evaluated for hydrodesulfurization (HDS) process of iso diesel and light diesel in the
In recent years, many studies have been done on reusing waste materials like red mud, because it consists of various oxides like iron oxides, alumina and silica that can be used as support for hydrodesulfurization catalysts. The common hydrodesulfurization catalysts are CoMo/Al2O3 and NiMo/Al2O3. Addition of secondary promoter such as zirconia is proposed as a useful solution for increasing catalyst activity and production of standard fuels. In this paper, NiMo nanocatalyst supported on activated red mud was prepared by impregnation method containing various amounts of Zr promoter and its catalytic performance was evaluated for hydrodesulfurization (HDS) process of iso diesel and light diesel in the atmospheric pressure. The red mud support along with synthesized nanocatalysts were characterized with XRF, XRD, FESEM, BET and FTIR techniques. Analytical techniques related to NiMo/ZrO2-ARM nanocatalysts characterization revealed that zirconia addition resulted in uniform dispersion of particles on the support surface and destroying of agglomerate, an increase in the active phase and a decrease in the formation of Ni spineless. The catalytic activity of nanocatalysts in the hydrodesulfurization process showed that NiMo/ZrO2-ARM with 10 wt.% zirconia had the best catalytic activity for iso diesel and 15 wt.% zirconia for light diesel.

کلیدواژه‌ها [English]

  • Red Mud
  • NiMo/ARM nanocatalyst
  • Promoter
  • Zirconia
  • Hydrodesulfurization
      M. A. Ali, T. Tatsumi, T. Masuda, “Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports,” Applied Catalysis A: General 233, 2002, pp. 77-90.
2.   J. A. Juarez, M. S. Rana, E. Furimsky, “Hydroprocessing of heavy petroleum feeds: Tutorial,” Catalysis Today 109, 2005, pp. 3-15.
3.   R. L. C Bonné, P. van Steenderen, J. A. Moulijn, “Hydrogenation of nickel and vanadyl tetraphenylporphyrin in absence of a catalyst: A kinetic study,” Applied Catalysis A: General 206, 2001, pp. 171-181.
4.   Y. V. Joshi, P. Ghosh, M. Daage, W. N. Delgass, “Support effects in HDS catalysts: DFT analysis of thiolysis and hydrolysis energies of metal–support linkages,” Journal of Catalysis 257, 2008, pp. 71-80.
5.   V. B Kazansky, I. N. Senchenya, “Quantum chemical study of the electronic structure and geometry of surface alkoxy groups as probable active intermediates of heterogeneous acidic catalysts: What are the adsorbed carbenium ions,” Journal of Catalysis 119, 1989, pp. 108-120.
6.   Y. W Li, X. Y. Pang, B. Delmon, “Role of hydrogen in HDS/HYD catalysis over MoS2: an ab initio investigation,” Journal of Molecular Catalysis A: Chemical 169, 2001, pp. 259-268.
7.   M. Mirzaie, A. Sarrafi, M. Tahmoresi, “Modeling and simulation of removal of sulfur component from oil in a fixed bed reactor in dynamic state,” Chemical Technology: An Indian Journal 9, 2014, pp. 103-111.
8.   J. Přech, M. Kubů, J. Čejka, “Synthesis and catalytic properties of titanium containing extra-large pore zeolite CIT-5,” Catalysis Today 227, 2014, pp. 80-86.
9.   J. Přech, D. Vitvarová, L. Lupínková, M. Kubů, J. Čejka, “Titanium impregnated borosilicate zeolites for epoxidation catalysis,” Microporous and Mesoporous Materials 212, 2015, pp. 28-34.
10. J. Ramírez, G. Macías, L. Cedeño, A. Gutiérrez-Alejandre, R. Cuevas, P. Castillo, “The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences,” Catalysis Today 98, 2004, pp. 19-30.
11. M. S. Rana, J. Ancheyta, S. K. Maity, P. Rayo, “Heavy crude oil hydroprocessing: A zeolite-based CoMo catalyst and its spent catalyst characterization” Catalysis Today 130, 2008, pp. 411-420.
12. J. Ren, A. Wang, X. Li, Y. Chen, H. Liu, Y. Hu, “Hydrodesulfurization of dibenzothiophene catalyzed by Ni-Mo sulfides supported on a mixture of MCM-41 and HY zeolite,” Applied Catalysis A: General 344, 2008, pp. 175-182.
13. J. R. Restrepo-Garcia, V. G. Baldovino-Medrano, S. A. Giraldo, “Improving the selectivity in hydrocracking of phenanthrene over mesoporous Al-SBA-15 based Fe–W catalysts by enhancing mesoporosity and acidity,” Applied Catalysis A: General 510, 2016, pp. 98-109.
14. J. G. Speight, “New approaches to hydroprocessing,” Catalysis Today 98, 2004, pp. 55-60.
15. Q. Cui, Y. Zhou, Q. Wei, G. Yu, L. Zhu, “Performance of Zr- and P-modified USY-based catalyst in hydrocracking of vacuum gas oil,” Fuel Processing Technology 106, 2013, pp. 439-446.
16. E. Kraleva, A. Spojakina, M. L. Saladino, E. Caponetti, G. Nasillo, K. Jiratova, "Nanoparticles of TiAlZr mixed oxides as supports of hydrodesulfurization catalysts: Synthesis and characterization," Journal of Alloys and Compounds 513, 2012, pp. 310-317.
17. J. M. Lewis, R. A. Kydd, “Adsorption mechanism of phosphoric acid on γ-alumina,” Journal of Catalysis 132, 1991, pp. 465-471.
18. G. Li, W. Li, M. Zhang, K. Tao, “Morphology and hydrodesulfurization activity of CoMo sulfide supported on amorphous ZrO2 nanoparticles combined with Al2O3,” Applied Catalysis A: General 273, 2004, pp. 233-238.
19. Y. Wang, B. Shen, J. Li, B. Feng, X. Li, S. Ren, Q. Guo, “Interaction of coupled titanium and phosphorous on USY to tune hydrodesulfurization of 4,6-DMDBT and FCC LCO over NiW catalyst,” Fuel Processing Technology 128, 2014, pp. 166-175.
20. D. Zhang, A. Duan, Z. Zhao, G. Wan, Z. Gao, G. Jiang, K. Chi, K. H. Chuang, “Preparation, Characterization and hydrotreating performances of ZrO2–Al2O3-supported NiMo catalysts,” Catalysis Today 149, 2010, pp. 62-68.
21. W. Zhou, Q. Zhang, Y. Zhou, Q. Wei, L. Du, S. Ding, S. Jiang, Y. Zhang, “Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels,” Catalysis Today 305, 2018, pp. 171-181.
22. M. S. Rana, J. A. Juarez, S. K. Maity, P. Rayo, “Characteristics of Maya crude hydrodemetallization and hydrodesulfurization catalysts,” Catalysis Today 104, 2005, pp. 86-93.
23. M. S. Rana, J. Ancheyta, S. K. Maity, P. Rayo, “Hydrotreating of Maya Crude Oil: II. Generalized Relationship between Hydrogenolysis and HDAs,” Petroleum Science and Technology 25, 2007, pp. 201-213.
24. M. S. Rana, J. Ancheyta, S. K. Maity, P. Rayo, “A review of recent advances in catalytic hydrocracking of heavy residues,” Journal of Industrial and Engineering Chemistry 27, 2015, pp. 12-24.
25. S. SartipiM. MakkeeF. KapteijnJ. Gascon, “Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review,” Catalysis Science & Technology 4, 2014, pp. 893-907.
26. J. L. Cao, Z. L. Yan, Q. F. Deng, Y. Wang, Z. Y. Yuan, G. Sun, T. K. Jia, X. D. Wang, H. Bala, Z. Y. Zhang, “Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen,” International Journal of Hydrogen Energy 39, 2014, pp. 5747-5755.
27. R. X. Liu, C. S. Poon, “Utilization of red mud derived from bauxite in self-compacting concrete,” Journal of Cleaner Production 112, 2016, pp. 384-391.
28. S. Cao, H. Ma, Y. Zhang, X. Chen, Y. Zhang, Y. Zhang, “The phase transition in Bayer red mud from China in high caustic sodium aluminate solutions,” Hydrometallurgy 140, 2013, pp. 111-119.
29. C. N. Huy, H. Kweon, H. Kim, D. K. Kim, D. W. Kim, S. H. Oh, E. W. Shin, “Slurry-phase hydrocracking of vacuum residue with a disposable red mud catalyst,” Applied Catalysis A: General 447-448, 2012, pp. 186-192.
30. S. Yao, Y. ZhengL. DingS. NgH. Yang, “Co-promotion of fluorine and boron on NiMo/Al2O3 for hydrotreating light cycle oil,” Catalysis Science & Technology 2, 2012, pp. 1925-1932.
31. X. Zhu, W. Li,  X. Guan, “An active dealkalization of red mud with roasting and water leaching,” Journal of Hazardous Materials 286, 2015, pp. 85-91.
32. M. Ebrahiminejad, R. Karimzadeh, “Investigation of the Effect of Boron Promoter on Structural Properties of NiMo Nanocatalyst supported on Red Mud synthesized by Impregnation Method for Hydrocracking and Hydrodesulfurization of Oil Cuts,” Journal of Fuel and Combustion 12, 2019, pp. 97-117.
33. S. Eijsbouts, “On the flexibility of the active phase in hydrotreating catalysts,” Applied Catalysis A: General 158, 1997, pp. 53-92.
34. M. A. V. Garcia,J. Lindner, A. Sachdev, J. Schwank, “Solid state synthesis and characterization of model hydrodesulfurization catalysts,” Journal of Catalysis 119, 1989, pp. 388-399.
35. P. Jabbarnezhad, M. Haghighi, P. Taghavinezhad, “Sonochemical synthesis of NiMo/Al2O3–ZrO2 nanocatalyst: Effect of sonication and zirconia loading on catalytic properties and performance in hydrodesulfurization reaction,” Fuel Processing Technology 126, 2014, pp. 392-401.
36. P. Jabbarnezhad, M. Haghighi, P. Taghavinezhad, “Synthesis and physicochemical characterization of ZrO2-doped NiMo/Al2O3 nanocatalyst via precipitation and sequential impregnation methods used in hydrodesulfurization of thiophene,” Korean Journal of Chemical Engineering 32, 2015, pp. 1258-1266.
37. M. Ebrahimynejad, M. Haghighi, “Nanocatalysts: Effect of Active-phase and Promoter on Catalytic Properties and Performance in the Hydrodesulfurization Reaction,” Petroleum Science and Technology 32, 2014, pp. 2867-2877.
38. M. Ebrahimynejad, M. Haghighi, N. Asgari, “Ultrasound assisted synthesis and physicochemical characterizations of fluorine-modified CoMo/Al2O3 nanocatalysts used for hydrodesulfurization of thiophene,” J Nanosci Nanotechnol 14, 2014, pp. 6848-57.
39. S.C. Kim, S.W. Nahm, Y.-K. Park, “Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds,” Journal of Hazardous Materials 300, 2015, pp. 104-113.
40. A. Alp, M.S. Goral, “The influence of soda additive on the thermal properties of red mud,” Journal of Thermal Analysis and Calorimetry 73, 2003, pp. 201-207.
41. H. Nath, P. Sahoo, A. Sahoo, “Characterization of Red Mud treated under high temperature fluidization,” Powder Technology 269, 2015, pp. 233-239.
42. B. Xu, F. Qi, J. Zhang, H. Li, D. Sun, D. Robert, Z. Chen, “Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: Catalyst surface properties characterization and reaction mechanism,” Chemical Engineering Journal 284, 2016, pp. 942-952.
43. J. L. CaoZ. L. Yan, Q. F. DengZ.Y. Yuan, Y. Wang, G. Sun, X. D. Wang, B. Hari, Z. Y. Zhang, “Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition,” Catalysis Science & Technology 4, 2014, pp. 361-368.
44. J. Joon, L. Heeyeon, K. Jae, H. Koh, A. Jo, S. H. Moon, “Performance of fluorine-added CoMoS/Al2O3 prepared by sonochemical and chemical vapor deposition methods in the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene,” Applied Catalysis B: Environmental 61, 2005, pp. 274-280.