مطالعه جذب بعد ازاحتراق کربن‌دی‌اکسید از نیروگاه سیکل ترکیبی گاز طبیعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز

2 دانشگاه صنعتی سهند

چکیده

در در این مطالعه یک نیروگاه 1000 مگاواتی سیکل ترکیبی گاز طبیعی برای کاهش اثرات زیست محیطی آن با سیستم‌های جذب شیمیایی و تراکم کربن دی‌اکسید تجمیع شده است تا تأثیر به‌کارگیری این سیستم‌ها بر روی عملکرد نیروگاه مورد بررسی قرار‌گیرد. برای این منظور با استفاده از نرم‌افزار Aspen HYSYS v9 ابتدا نیروگاه مذکور مدل‌سازی شد و سپس سیستم جذب و تراکم متناسب برای جذب %90 کربن دی‌اکسید از گاز دودکش طراحی و شبیه‌سازی شدند. در اثر تجمیع این سیستم‌ها با نیروگاه بازده آن از %5/62 به %4/53 کاهش می‌یابد. این کاهش ناشی از استخراج بخار برای تامین گرمای ریبویلر و کار مصرفی در سیستم‌های جذب و تراکم است. سیستم گردش مجدد گاز دودکش با نسبت %35 و بازیابی حرارت‌های اتلافی به وسیله چرخه رانکین ارگانیک به عنوان دو راهکار برای بهبود بازده نیروگاه بکار گرفته شد. در این حالت بازده نیروگاه برابر با %96/54 می‌شود که %56/1 که نسبت به حالت تجمیع اولیه افزایش یافته است. در اثر تجمیع نیروگاه با سیستم جذب و تراکم در حالت نهایی میزان انتشار کربن‌دی‌اکسید از g/kWh 71/324 به g/kWh 71/36 کاهش یافته است.

کلیدواژه‌ها


  1. Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.), IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, www.ipcc.ch/report/ar5/syr/.
  2. IEA, CO2 emissions from fuel combustion-highlights, International Energy Agency, Paris, 2015 edition.
  3. IEA, Key world energy statistics, International Energy Agency, Paris, 2015.
  4. IEA, Technology roadmap: carbon capture and storage, IEA Publications, Paris (France), 2013.
  5. D.Y.C. Leung, G. Caramanna  and M. Mercedes Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renewable and Sustainable Energy Reviews, 39, pp. 426-443, 2014.
  6. X. Wu, Y. Yu, Z. Qin and Z. Zhang, "The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines,” Energy Procedia, 63, pp. 1339-1346, 2014.
  7. M. Wang, A. Lawal, P. Stephenson, J. Sidders and C. Ramshaw, “Post-combustion CO2 capture with chemical absorption: A state-of-the-art review,” Chemical Engineering Research and Design, 89, NO. 9, pp. 1609 - 1624, 2011.
  8. K. Goto,  K. Yogo and  T. Higashii, “A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture,” Applied Energy, 111, pp. 710-720, 2013.
  9. M. R. M. Abu-Zahra,  L. H. J. Schneiders,  J. P. M. Niederer,  P. H. M. Feron and G.F. Versteeg “CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine,” International Journal of Greenhouse Gas Control, 1, NO. 1, pp. 37-46, 2007.
  10. M. R. M. Abu-Zahra,  J. P. M. Niederer,  P. H. M. Feron and G. F. Versteeg “CO2 capture from power plants: Part II. A parametric study of the economical performance based on mono-ethanolamine,” International Journal of Greenhouse Gas Control, 1, NO. 2, pp. 135-142, 2007.
  11. M. Karimi, M. Hillestad and H. F. Svendsen, “Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture,” Chemical Engineering Research and Design, 89, pp. 1229-1236, 2011.
  12. Z. Amrollahi, P. A. M. Ystad, I. S. Ertesvåg and O. Bolland, “Optimized process configurations of post-combustion CO2 capture for natural-gas-fired power plant-Power plant efficiency analysis,” International Journal of Greenhouse Gas Control, 8, pp. 1-11, 2012.
  13. H. Ahn, M. Luberti, Z. Liu and S. Brandani, “Process configuration studies of the amine capture process for coal-fired power plants,” International Journal of Greenhouse Gas Control, 16, pp. 29-40, 2013.
  14. J. Davison, “Performance and costs of power plants with capture and storage of CO2,” Energy, 32, pp. 1163-1176, 2007.
  15. H. Li,  G. Haugen,  M. Ditaranto,  D. Berstad and K. Jordal, “Impacts of exhaust gas recirculation (EGR) on the natural gas combined cycle integrated with chemical absorption CO2 capture technology,” Energy Procedia, 4, pp. 1411-1418, 2011.
  16. C. Biliyok and H. Yeung, “Evaluation of natural gas combined cycle power plant for post-combustion CO2capture integration,” International Journal of Greenhouse Gas Control, 19, pp. 396-405, 2013.
  17. X. Luo, M. Wang  and J. Chen “Heat integration of natural gas combined cycle power plant integrated with post-combustion CO2 capture and compression,” Fuel, 115, pp. 110-117, 2015.
  18. P. A. Marchioro Ystad, A. A. Lakew  and O. Bolland, “Integration of low-temperature transcritical CO2 Rankine cycle in natural gas-fired combined cycle (NGCC) with post-combustion CO2 capture,” International Journal of Greenhouse Gas Control, 12, pp. 213-219, 2013.
  19. Y. Hu, G. Xu, C. Xu and Y. Yang, “Thermodynamic analysis and techno-economic evaluation of an integrated natural gas combined cycle (NGCC) power plant withpost-combustion CO2 capture,” Applied Thermal Engineering, 111, pp. 308-316, 2017.
  20. H. Farajollahi and S. Hossainpour, “Application of organic Rankine cycle in integration of thermal power plant with post-combustion CO2 capture and compression,” Energy, 118, pp. 927-936, 2017.
  21. N. E. T. Laboratory, Current and Future Technologies for Natural Gas Combined Cycle (NGCC) PowerPlant, DOE/NETL-341/061013, U.S.Department of Energy, Office of Fossil Energy, 2013.
  22. Y. Zhang, H. Chen, C. Chen, J. M. Plaza, R. Dugas and G. T. Rochelle, “Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution,” Industrial & Engineering Chemistry Research, 48, NO. 20, pp. 9233-9246, 2009.
  23. Y. Song and C. Chen, “Symmetric Electrolyte Nonrandom Two-Liquid Activity Coefficient Model,” Industrial & Engineering Chemistry Research, 48, NO. 16, pp. 7788-7797, 2009.
  24. Y. Zhang,  H. Que and C. Chen, “Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model,” Fluid Phase Equilibria, 311, pp. 67-75, 2011.
  25. B. Li, N. Zhang and R. Smith, “Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution,” Applied Energy, 161, pp. 707-717, 2016.
  26. P. Pei, K. Barse, A.J. Gil and J. Nasah, “Waste heat recovery in CO2 compression,” International Journal of Greenhouse Gas Control, 30, pp. 86-96, 2014.
  27. G. Xu, Y. Wu, Y. Yang, K. Zhang and X. Song, “A novel integrated system with power generation, CO2 capture, and heat supply,” Applied Thermal Engineering, 61, NO. 2, pp. 110-120, 2013.
  28. L. Duan, M. Zhao and Y. Yang, “Integration and optimization study on the coal-fired power plant with CO2 capture using MEA,” Energy, 45, NO. 1, pp. 107-116, 2012.
  29. G. Xu, Y. Yang, J. Ding, S. Li, W. Liu and K. Zhang, Analysis and optimization of CO2 capture in an existing coal-fired power plant in China,” Energy, 58, pp. 117-127, 2013.
  30. X. Liu, J. Chen, X. Luo, M. Wang and H. Meng, “Study on heat integration of supercritical coal-fired power plant with post-combustion CO2 capture process through process simulation,” Fuel,158, pp. 625-633, 2015.
  31. H. Chen, D.Y. Goswami and E.K. Stefanakos, “A review of thermodynamic cycles and working fluids for the conversion of low-grade heat,” Renewable and Sustainable Energy Reviews, 14, NO. 9, pp. 3059-3067, 2010.
  32. J. Bao and L. Zhao, “A review of working fluid and expander selections for organic Rankine cycle,” Renewable and Sustainable Energy Reviews, 24, pp. 325-342, 2013.
  33. C. He, C. Liu, H. Gao, H. Xie, Y. Li, S. Wu and J. Xu, “The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle,” Energy, 38, NO. 1, pp. 136-143, 2012.
  34. E. O. Agbonghae, K. J. Hughes, D. B. Ingham, L. Ma and M. Pourkashanian, “Optimal Process Design of Commercial-Scale Amine-Based CO2 Capture Plants,” Industrial & Engineering Chemistry Research, 53, pp. 14815-14829, 2014.
  35. R. Canepa, M. Wang, C. Biliyok and A. Satta, “Thermodynamic analysis of combined cycle gas turbine power plant with postcombustion CO2 capture and exhaust gas recirculation,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 227, NO. 2, pp. 89-105, 2012.