بررسی عددی اثرات زاویه واگرایی ، طول ناحیه پیش‌گرمایش، بر روی احتراق و ایجاد آلاینده‌ها در مشعل محیط متخلخل

نوع مقاله: مقاله پژوهشی

نویسندگان

مهندسی مکانیک دانشگاه فردوسی مشهد

چکیده

در این مقاله نتایج حاصل از مدل‌سازی دوبعدی و متقارن محور احتراق پیش‌آمیخته متان-هوا با سینتیک چندمرحله‌ای در داخل محیط متخلخل با تغییر تخلخل پیوسته ارائه‌ شده است که در آن برای مشخص کردن خصوصیات ترمو‌فیزیکی و ترموشیمیایی از برنامه کمکین2 و اطلاعات پایه آن استفاده شده است. معادلات پیوستگی، ناویر استوکس، معادلات انتقال حرارت فاز گاز و جامد و معادلات حاکم بر گونه‌های شیمیایی با استفاده از روش حجم محدود حل شده و برای ارتباط بین سرعت و فشار از الگوریتم سیمپل استفاده شده است. مشعل مورد مطالعه شامل دو ناحیه پیش‌گرم و احتراقی است. در این‌کار به بررسی اثرات تغییر زاویه واگرایی و طول ناحیه پیش‌گرمایش مشعل بر روی پروفیل دما و انتشار آلاینده‌ها می‌پردازیم. نتایج نشان داد که با افزایش زاویه واگرایی میزان آلاینده NO در خروجی مشعل به شکل چشمگیری افزایش می‌یابد درحالی‌که با افزایش طول ناحیه پیش‌گرمایش مقدار انتشار این آلاینده در خروجی کاهش می‌یابد.

کلیدواژه‌ها


. R. Echigo, “Effective Energy Conversion Method Between Gas Enthalpy and Thermal Radiation and Application to Industrial Furnaces,” Proc. 7th Int. Heat Transfer conf., München 6, 1982, pp. 361-366.

2. K. Wang, and C. Tien, “Thermal Insulation in Flow System, Combined Radiation and Convection Through a Porous Segment,” J. of Heat Transfer, 106, 1984, pp. 453-459.

3. P. Talukdar, S. Mishra, D. Trimis, and F. Durst, “Heat Transfer Characteristics of a Porous Radiant Burner under the Influence of a 2 D  Radiation Field,” J. Quantitative Spectroscopy & Radiative Transfer, 2003, pp. 1-11.

4. S. C. Mishra, M. Steven, S. Nemoda, P. Talukdar, D. Trimis, F. Durst, “Heat Transfer Analysis of a Two-Dimentional Rectangular Porous Radiant Burner,” International Communication in Heat and Mass Transfer, 33, 2006, pp. 467-474.

5. F. Avdic, M. Adzic, F. Durst, “Small scale porous medium combustion system for heat production in households,” Appl. Energy, 87, 2010, pp. 2148-2155.

6. M. Bidi, M. R. H. Nobari, M. Saffar Aval, “A Numerical Evaluation of Combustion in Porous Media by EGM (Entropy Generation Minimization),” Energy, 35, 2010, pp. 3483-3500.

7. M. A. Mujeebu, M. Abdullah, A. Mohamad, “ Development of Energy Efficient Porous Medium Burners on Surface and Submerged Combustion Modes,” Energy, 36, 2011, pp. 5132-5139.

8. W. Yoksenakul, S. Jugjai,” Design and Development of a SPMB (Self-Aspirating, Porous Medium Burner) with a Submerged Flame,” Energy, 36, 2011, pp. 3092-3100.

9. M. Sharma, S. Mishra, P. Mahanta, “An Experimental Investigation on Efficiency Improvement of a Conventional Kerosene Pressure Stove,” International Journal Energy Clean Environment, 12, 2011, pp. 79-93.

10. V. K. Pantangi, S. C. Mishra, P. Muthukumar, R. Reddy,“ Studies on Porous Radiant Burners for LPG (liquefied petroleum gas) Cooking Applications,” Energy, 36, 2011, pp. 6074-6080.

11. P. Muthukumar, P. Anand, P. achdeva,“ Performance analysis of porous radiant burners used in LPG cooking stove,” International Journal of Energy and Environment, 2, 2011, pp. 367-374.

12. I. Mohammadi, S. Hossainpour, ” Investigation of the effects of several porosity variation profiles on performance and pollutants emission of the porous media burners,” Fire and Materials, 40, 2014, pp. 3-17.

13. I. Mohammadi, S. Hossainpour,” The effects of chemical kinetics and wall temperature on performance of porous media burners,” Heat and Mass Transfer, 49, 2013, pp. 869-877.

14. C.Y. Wu, K.H. Chen, S.Y. Yang, “Experimental Study of Porous Metal Burners for Domestic Stove Applications,” Energy Conversion and Management, 77, 2014, pp. 380-388.

15. S. A. Hashemi, M. Dastmalchi, M. Nikfar, “Experimental Study Flashback Phenomenon in Porous Ceramic,” Amirkabir Journal of Science & Research (Mechanical Engineering), 46, 2014, pp. 25-35.

16. S. A. Hashemi, E. Noori, A. Aghaei,“ Experimental Study of Non-Premixed Turbulent Flame Stabilization with Porous Medium,” Modares Mechanical Engineering, 15, 2015, pp. 341-349.

17. H. Shabani Nejad, S. A. Gandjalikhan Nassab, E. Jahanshahi Javaran, “Numerical Study on Radiant Efficiency of a Porous Burner under Different Conditions,” Journal of Thermophysics and Heat Transfer, 32, 2017, pp. 1-8.

18. I. Malico, X. Y. Zhou, and J. C. F. Pereira, “Two-dimensional Numerical Study on Combustion and Pollutants formation in Porous Burner,” Combust, Sci and Tech, 152, 2000, pp.57-59.

19.  K. Vafai, Handbook of Porous Media, United States, Taylor & Francis Group, LIC, 2005.                                        

20. S. Nemoda, D. Trimis, and G. Zivkovich, “Numerical Simulation of Porous Burners and Hole Plate Surface Burners,” J, Thermal Science, 8, 2004, pp. 3-17.

21. S. Decker, S. Mößbauer, S. Nemoda, D. Trimis and T. Zapf, “Detailed Experimental Characterization and Numerical Modelling of Heat and Mass Transport Properties of Highly Porous Media for Solar Receivers and Porous Burners,” 6th International Conference on Technologies and Combustion for a Clean Environment, porto, portugal, 2000.

22. R. J. Kee, F. M. Rupley, and J. A. Miller, The ChemkinThermodynamic Data Base, Sandia National Laboratories, Rept. SAND-8215B, 1992.

23. F. Durst, and D. Trimis, Compact Porous Medium Burner and Heat Transfer Exchanger for Household Applications, Ec project report, Contact no. JOEC-CT95-0019, 1996.