بررسی تاثیر تقویت کننده بور روی خواص ساختاری نانوکاتالیست NiMo بر پایه گِل قرمز سنتزی به روش تلقیح جهت استفاده در فرایند هیدروکراکینگ و هیدرودی-سولفوریزاسیون برش‌های نفتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه تربیت مدرس دانشکده شیمی

چکیده

در این مقاله نانوکاتالیست NiMo بر پایه ماده زائد گِل قرمز با درصدهای متفاوتی از تقویت‌کننده بور، با استفاده از روش تلقیح سنتز شده است. برای بررسی خواص فیزیکی و ساختاری این نانوکاتالیست­ها از آنالیزهای XRD، XRF، BET، FESEM و FTIR استفاده شده است. نتایج به­دست­آمده نشان‌دهنده حذف بخش اعظم سدیم و کلسیم موجود در گِل قرمز، که باعث مستعد شدن آن به کلوخه­شدن می­شوند، افزایش سطح ویژه و کاهش اندازه ذرات آن و رسیدن به مقیاس نانو درنتیجه انجام فرایند فعال‌سازی است. همچنین تقویت‌کننده بور باعث توزیع یکنواخت ذرات روی سطح پایه، افزایش فاز فعال و کاهش تشکیل اسپینل نیکل در کاتالیست می­شود. نتایج حاصل از بررسی فعالیت نانوکاتالیست­های تهیه­شده در فرایندهای هیدروکراکینگ و هیدرودی­سولفوریزاسیون نشان­دهنده این است که خاصیت اسیدی ایجادشده توسط تقویت‌کننده بور باعث می­شود که محصول حاصل از فرایند هیدروکراکینگ حاوی مقدار بالاتری برش کروسین و بنزین باشد و در مقابل مقدار برش­های سنگین کاهش می­یابد. به‌علاوه، نانوکاتالیست حاوی مقدار بهینه بور (%8/. وزنی) می­تواند میزان ترکیبات گوگرددار در محصول نهایی را به مقدار قابل‌توجهی کاهش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Effect of Boron Promoter on Structural Properties of NiMo Nanocatalyst supported on Red Mud synthesized by Impregnation Method for Hydrocracking and Hydrodesulfurization of Oil Cuts

نویسندگان [English]

  • میترا ابراهیمی نژاد 1
  • Ramin Karimzadeh 2
1 Tarbiat Modares University
2 Tarbiat Modares University
چکیده [English]

In this paper, NiMo nanocatalysts supported on waste material red mud with various amounts of boron promoter were synthesized via impregnation method and their catalytic activity were tested in hydrodesulfurization and hydrocracking processes. The prepared nanocatalysts were characterized using XRD, XRF, FESEM, BET and FTIR analysis. The results obtained by the analysis related to activation red mud confirmed that activation process significantly decreases amounts of Ca and Na in the red mud and increases its specific surface area. FESEM images confirmed the formation of nanoparticles with an average particle size of 18.45 nm. Techniques employed in NiMo/B-ARM nanocatalysts characterization revealed that boron addition resulted in uniform dispersion of particles on the support surface, an increase in the active phase and a decrease in the formation of Ni spineless. The catalytic activity of nanocatalysts in the hydrocracking process showed that with the addition of boron, liquid products obtained in the process contained higher amounts of kerosene and gasoline and lower amounts of heavy cuts. In addition, hydrodesulfurization performance measurements showed that NiMo/B-ARM with 0.8 wt.% boron had the best catalytic activity.
 

کلیدواژه‌ها [English]

  • NiMo nanocatalyst
  • Red Mud
  • Boron
  • Hydrocracking
  • Hydrodesulfurization
  • 1.      J. Mosio-Mosiewski, I. Morawski, “Study on single-stage hydrocracking of vacuum residue in the suspension of Ni–Mo catalyst,” Applied Catalysis A: General 283, 2005, pp. 147-155.
  • 2.     Q. Cui, Y. Zhou, Q. Wei, G. Yu, L. Zhu, “Performance of Zr- and P-modified USY-based catalyst in hydrocracking of vacuum gas oil,” Fuel Processing Technology 106, 2013, pp. 439-446.
  • 3.     S. Albersberger, J. Hein, M. W. Schreiber, S. Guerra, J. Han, O. Y. Gutiérrez, J. A. Lercher, “Simultaneous hydrodenitrogenation and hydrodesulfurization on unsupported Ni-Mo-W sulfides,” Catalysis Today 297, 2017, pp. 344-355.
  • 4.     J. Álvarez, S. Ordóñez, R. Rosal, H. Sastre, F. V. Dı́ez, “A new method for enhancing the performance of red mud as a hydrogenation catalyst,” Applied Catalysis A: General 180, 1999, pp. 399-409.
  • 5.     J. Ancheyta, S. Sánchez, M.A. Rodríguez, “ Kinetic modeling of hydrocracking of heavy oil fractions: A review,” Catalysis Today 109, 2005, pp. 76-92.
  • 6.     H. Puron, P. Arcelus-Arrillaga, K.K. Chin, J. L. Pinilla, B. Fidalgo, M. Millan, “Kineticanalysis of vacuum residue hydrocracking in early reaction stages,” Fuel 117, 2014, pp. 408-414.
  • 7.     A. Gutiérrez, J.M. Arandes, P. Castaño, M. Olazar, A. Barona, J. Bilbao, “Effect of space velocity on the hydrocracking of Light Cycle Oil over a Pt–Pd/HY zeolite catalyst,” Fuel Processing Technology 95, 2012, pp. 8-15.
  • 8.     D. Zhang, A. Duan, Z. Zhao, G. Wan, Z. Gao, G. Jiang, K. Chi, K. H. Chuang, “Preparation, characterization and hydrotreating performances of ZrO2–Al2O3-supported NiMo catalysts,” Catalysis Today 149, 2010, pp. 62-68.
  • 9.     T. N. Zhou, H. L. Yin, S. N. Han, Y. M. Chai, Y. Q. Liu, C. G. Liu, “Influences of different phosphorus contents on NiMoP/Al2O3 hydrotreating catalysts,” Journal of Fuel Chemistry and Technology 37, 2009, pp. 330-334.
  • 10.  W. Zhou, Q. Zhang, Y. Zhou, Q. Wei, L. Du, S. Ding, S. Jiang, Y. Zhang, “Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels,” Catalysis Today 305, 2018, pp. 171-181.
  • 11.  J. G. Speight, “New approaches to hydroprocessing,” Catalysis Today 98, 2004, pp. 55-60.
  • 12.  J. Ancheyta, M. S. Rana, E. Furimsky, “Hydroprocessing of heavy petroleum feeds: Tutorial,” Catalysis Today 109, 2005, pp. 3-15.
  • 13.  Y. Villasana, Y. Escalante, J. E. Rodríguez Nuñez, F. J. Méndez, S. Ramírez, M. Á. Luis-Luis, E. Cañizales, J. Ancheyta, J. L. Brito, “Maya crude oil hydrotreating reaction in a batch reactor using alumina-supported NiMo carbide and nitride as catalysts,” Catalysis Today 220–222, 2014, pp. 318-326.
  • 14.  D. Zuo, D. Li, H. Nie, Y. Shi, M. Lacroix, M. Vrinat, “Acid–base properties of NiW/Al2O3 sulfided catalysts: relationship with hydrogenation, isomerization and hydrodesulfurization reactions,” Journal of Molecular Catalysis A: Chemical 211, 2004, pp. 179-189.
  • I. D. Mall, Petrochemical Process Technology, Macmillan, India, 2006.
  • M. A. V. Garcia, J. Lindner, A. Sachdev, J. Schwank, “Solid state synthesis and characterization of model hydrodesulfurization catalysts,” Journal of Catalysis 119, 1989, pp. 388-399.
  • S. Eijsbouts, “On the flexibility of the active phase in hydrotreating catalysts,” Applied Catalysis A: General 158, 1997, pp. 53-92.
  • 16.  C. Manrique, A. Guzmán, J. Pérez-Pariente, C. Márquez-Álvarez, A. Echavarría, “Vacuum gas-oil hydrocracking performance of Beta zeolite obtained by hydrothermal synthesis using carbon nanotubes as mesoporous template,” Fuel 182, 2016, pp. 236-247.
  • 17.  M. Roussel, J. L. Lemberton, M. Guisnet, T. Cseri, E. Benazzi,Mechanisms of n-decane hydrocracking on a sulfided NiW on silica-alumina catalyst,” Journal of Catalysis 218, 2003, pp. 427-437.
  • 18.  R. X. Liu, C. S. Poon, “Utilization of red mud derived from bauxite in self-compacting concrete,” Journal of Cleaner Production 112, Part 1, 2016, pp. 384-391.
  • 19.  S. Wang, H. M. Ang, M. O. Tadé, “Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes,” Chemosphere 72, 2008, pp. 1621-1635.
  • 20.  C. Nguyen-Huy, H. Kweon, H. Kim, D. K. Kim, D. W. Kim, S. H. Oh, E. W. Shin, “Slurry-phase hydrocracking of vacuum residue with a disposable red mud catalyst,” Applied Catalysis A: General 447–448, 2012, pp. 186-192.
  • 21.  S. Cao, H. Ma, Y. Zhang, X. Chen, Y. Zhang, Y. Zhang, “ The phase transition in Bayer red mud from China in high caustic sodium aluminate solutions,” Hydrometallurgy 140, 2013, pp. 111-119.
  • 22.  S. Sushil, V.S. Batra, “Modification of red mud by acid treatment and its application for CO removal,” Journal of Hazardous Materials 203-204, 2012, pp. 264-273.
  • 23.  H. Sutar, S. C. Mishra, S.K. Sahoo, A. P. chakraverty, H. S. Maharana, “Progress of Red Mud Utilization: An Overview,” American Chemical Science Journal 4, 2014, pp. 255-279.
  • 24.  N. Y. Topsøe, H. Topsøe, “Characterization of the structures and active sites in sulfided CoMo/Al2O3 and NiMo/Al2O3catalysts by NO chemisorption,” Journal of Catalysis 84, 1983, pp. 386-401.
  • 25.  B. Xu, F. Qi, J. Zhang, H. Li, D. Sun, D. Robert, Z. Chen, “Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: Catalyst surface properties characterization and reaction mechanism,” Chemical Engineering Journal 284, 2016, pp. 942-952.
  • 26.  J. Yanik, M. A. Uddin, K. Ikeuchi, Y. Sakata, “The catalytic effect of Red Mud on the degradation of poly (vinyl chloride) containing polymer mixture into fuel oil,” Polymer Degradation and Stability 73, 2001, pp. 335-346.
  • 27.  X. Zhu, W. Li, X. Guan, “An active dealkalization of red mud with roasting and water leaching,” Journal of Hazardous Materials 286, 2015, pp. 85-91.
  • 28.  A. López, I. de Marco, B. M. Caballero, M. F. Laresgoiti, A. Adrados, A. Aranzabal, “Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud,” Applied Catalysis B: Environmental 104, 2011, pp. 211-219.
  • 29.  J. Alvarez, R. Rosal, H. Sastre, F. V. Dı́ez, “Characterization and deactivation studies of an activated sulfided red mud used as hydrogenation catalyst,” Applied Catalysis A: General 167, 1998, pp. 215-223.
  • 30.  J. L. Cao, Z. L. Yan, Q.-F. Deng, Z. Y. Yuan, Y. Wang, G. Sun, X. D. Wang, B. Hari, Z. Y. Zhang, “Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition,” Catalysis Science & Technology 4, 2014, pp. 361-368.
  • 31.  Y. Wang, B. Shen, J. Li, B. Feng, X. Li, S. Ren, Q. Guo, “ Interaction of coupled titanium and phosphorous on USY to tune hydrodesulfurization of 4,6-DMDBT and FCC LCO over NiW catalyst,” Fuel Processing Technology 128, 2014, pp. 166-175.
  • 32.  C. E. Xiang, Y. M. Chai, J. Fan, C. G. Liu, “Effect of phosphorus on the hydrodesulfurization and hydrodenitrogenation performance of presulfided NiMo/Al2O3 catalyst,” Journal of Fuel Chemistry and Technology 39, 2011, pp. 355-360.
  • 33.  J. Ye, X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Liu, W. Fang, Y. Wu, H. Zhang, “ Interaction between phosphate and acid-activated neutralized red mud during adsorption process,” Applied Surface Science 356, 2015, pp. 128-134.
  • 34.  M. Lewandowski, Z. Sarbak, “The effect of boron addition on texture and structure of NiMo/Al2O3 catalysts,” Crystal Research and Technology 32, 1997, pp. 499-508.
  • 35.  S. Yao, Y. Zheng, L. Ding, S. Ng, H. Yang, “Co-promotion of fluorine and boron on NiMo/Al2O3 for hydrotreating light cycle oil,” Catalysis Science & Technology 2, 2012, pp. 1925-1932.
  • 36.  M. L. Occelli, T. P. Debies, “Boron effects in a zeolite-based hydrotreating catalyst,” Journal of Catalysis 97, 1986, pp. 357-365.
  • 37.  D. Li, T. Sato, M. Imamura, H. Shimada, A. Nishijima, “ The effect of boron on HYD, HC and HDS activities of model compounds over Ni–Mo/γ-Al2O3–B2O3 catalysts,” Applied Catalysis B: Environmental 16, 1998, pp. 255-260.
  • 38.  C. Li, Y.W. Chen, S.J. Yang, J.C. Wu, “Hydrodesulfurization reactions of atmospheric gas oil over cobalt-molybdenum/alumina-aluminum borate catalysts,” Industrial & Engineering Chemistry Research 32, 1993, pp. 1573-1578.
  • 39.  J. Ramírez, P. Castillo, L. Ceden˜o, R. Cuevas, M. Castillo, J. Palacios, A. López-Agudo, “ Effect of boron addition on the activity and selectivity of hydrotreating CoMo/Al2O3 catalysts,” Applied Catalysis A: General 132, 1995, pp. 317-334.
  • 40.  S. C. Kim, S. W. Nahm, Y. K. Park, “Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds,” Journal of Hazardous Materials 300, 2015, pp. 104-113.
  • 41.  K. C. Pratt, V. Christoverson, “Hydrogenation of a model hydrogen-donor system using activated red mud catalyst,” Fuel 61, 1982, pp. 460-462.
  • 42.  P. Estifaee, M. Haghighi, N. Mohammadi, F. Rahmani, “CO oxidation over sonochemically synthesized Pd-Cu/Al2O3 nanocatalyst used in hydrogen purification: effect of Pd loading and ultrasound irradiation time,” Ultrasonics Sonochemistry 21, 2014, pp. 1155-1165.
  • 43.  H. Nath, P. Sahoo, A. Sahoo, “Characterization of Red Mud treated under high temperature fluidization,” Powder Technology 269, 2015, pp. 233-239.
  • 44.  S. Jamalzadeh, M. Haghighi, N. Asgari, “Synthesis and physicochemical characterizations of nanostructured Pd/carbon-clinoptilolite-CeO2 catalyst for abatement of xylene from waste gas streams at low temperature,” Journal of Industrial and Engineering Chemistry 20, 2014, pp. 2735-2744.
  • 45.  A. Alp, M.S. Goral, “The influence of soda additive on the thermal properties of red mud,” Journal of Thermal Analysis and Calorimetry 73, 2003, pp. 201-207.
  • 46.  J. L. Cao, Z. L. Yan, Q. F. Deng, Y. Wang, Z. Y. Yuan, G. Sun, T. K. Jia, X. D. Wang, H. Bala, Z. Y. Zhang, “Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen,” International Journal of Hydrogen Energy 39, 2014, pp. 5747-5755.
  • 47.  M. Ebrahimynejad, M. Haghighi, “Nanocatalysts: Effect of Active-phase and Promoter on Catalytic Properties and Performance in the Hydrodesulfurization Reaction,” Petroleum Science and Technology 32, 2014, pp. 2867-2877.
  • 48.  M. Ebrahimynejad, M. Haghighi, N. Asgari, “Ultrasound Assisted Synthesis and Physicochemical Characterizations of Fluorine-Modified CoMo/Al2O3 Nanocatalysts Used for Hydrodesulfurization of Thiophene,” Journal of nanoscience and nanotechnology 14, 2014, pp. 6848-6857.
  • 49.  I. Hita, T. Cordero-Lanzac, A. Gallardo, J. M. Arandes, J. Rodríguez-Mirasol, J. Bilbao, T. Cordero, P. Castaño, “Phosphorus-containing activated carbon as acid support in a bifunctional Pt–Pd catalyst for tire oil hydrocracking,” Catalysis Communications 78, 2016, pp. 48-51.
  • 52.  J. J. Lee, H. Kim, J. H. Koh, A. Jo, S. H. Moon, “Performance of fluorine-added CoMoS/Al2O3 prepared by sonochemical and chemical vapor deposition methods in the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene,” Applied Catalysis B: Environmental 61, 2005, pp. 274-280.
  • 53.  C. Nguyen-Huy, V. H. Pham, D. K. Kim, D. W. Kim, S. H. Oh, J. S. Chung, W. J. Kim, E. W. Shin, “Role of macroporosity in macro-mesoporous red mud catalysts for slurry-phase hydrocracking of vacuum residue,” Applied Catalysis A: General 468, 2013, pp. 305-312.
  • 54.  J. L. Agudelo, E. J. M. Hensen, S. A. Giraldo, L. J. Hoyos, “ Influence of steam-calcination and acid leaching treatment on the VGO hydrocracking performance of faujasite zeolite,” Fuel Processing Technology 133, 2015, pp. 89-96.
  •  
  •