بررسی عددی تأثیر محتوای رطوبت، قطر ذره و دبی جرمی سوخت بر احتراق سوخت جامد مشتق شده از لجن نفتی پالایشگاهی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

2 هیات علمی دانشگاه آزاد اسلامی واحد نجف آباد

چکیده

چکیده: سالانه مقدار زیادی لجن نفتی حین بهره برداری و فعالیت‌های فرآیندی بر روی نفت خام تولید می‌شود. سوزاندن لجن ‌نفتی در راستای بازیافت انرژی موجود در آن و همچنین به‌عنوان راهکاری جهت مدیریت این پسماند خطرناک می‌تواند مورد توجه قرار گیرد. در تحقیق حاضر، شبیه‌سازی عددی احتراق سوخت جامد مشتق شده از لجن نفتی پالایشگاهی در یک کوره‌ی دو بعدی دارای تقارن محوری انجام شده است. بررسی تاثیر قطر ذرات سوخت بر فرایند احتراق نشان داد با افزایش قطر ذرات از m 5-10×5 تا m 4-10×6، مقدار بیشینه‌ی دما حدود 14 درصد کاهش می‌یابد و مکان بیشینه‌ی دما نیز cm 40 از ورودی کوره دورتر می‌شود. به منظور بررسی اثر میزان آب‌گیری از لجن نفتی پالایشگاهی بر خواص احتراقی سوخت، مطالعه‌ای بر روی اثر میزان محتوای رطوبت سوخت انجام گرفت. نتایج حاضر نشان داد افزایش 30 درصدی جرم رطوبت در آنالیز تقریبی سوخت، مقدار بیشینه‌ی دما را در حدود 11 درصد کاهش می‌دهد. همچنین، تاثیر میزان دبی جرمی سوخت ورودی در بازهgr/s 15/0 تا gr/s 29/0 بررسی شد. در بازه مورد بررسی کاهش دبی سوخت تأثیر قابل توجهی بر بیشینه‌ی دمای گازهای احتراق نداشته، در حالی که میزان انتشار گازهای CO2 و CO به نحو مطلوبی کاهش می‌یابد. در نهایت نتایج حاصل از احتراق سوخت جامد مشتق شده از لجن نفتی نشان داد با انجام آماده‌ سازی سوخت نظیر کاهش رطوبت و استفاده از ذرات با قطر کوچک‌تر می‌توان نتایج قابل قبولی به‌دست آورد و از ارزش حرارتی لجن نفتی به نحو مطلوبی استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of the Effect of Moisture Content, Particle Diameter and Fuel Mass Loading on Combustion of Solid Fuel Derived from Refinery Oily-Sludge

نویسندگان [English]

  • Soulmaz Farahvashi 1
  • SOBHAN EMAMI 2
1 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 هیات علمی دانشگاه آزاد اسلامی واحد نجف آباد
چکیده [English]

A large amount of oil sludge is produced annually during the operation and process activities on crude oil. The burning of oil sludge can be considered as an approach in order to recover the energy as well as to control and mitigate risks of this hazardous waste. In the present study, the combustion of solid fuel derived from refinery oily-sludge is conducted numerically in a 2-D axisymmetric furnace. Investigating the effect of fuel particle diameter on the combustion process shows that with increasing particle diameter the maximum temperature reduces and the maximum temperature location 
A large amount of oil sludge is produced annually during the operation and process activities on crude oil. The burning of oil sludge can be considered as an approach in order to recover the energy as well as to control and mitigate risks of this hazardous waste. In the present study, the combustion of solid fuel derived from refinery oily-sludge is conducted numerically in a 2-D axisymmetric furnace. Investigating the effect of fuel particle diameter on the combustion process shows that with increasing particle diameter the maximum temperature reduces and the maximum temperature location goes farther from the furnace entrance. In order to investigate the effect of dewatering refinery oily-sludge on combustion properties, a study was conducted on the moisture content of fuel. The results show that an increase of 30% in moisture content in proximate fuel analysis reduces the maximum temperature by about 11%. Also, the effect of the fuel mass flow rate is investigated in the range of 0.15 gr/s to 0.29 gr/s. The results show that reducing the fuel mass load has a slight impact on maximum temperature of gas flow. However, CO and CO2 emissions experience a desirable decline.The study on combustion of solid fuels derived from oil-sludge shows that by making fuel preparation such as reducing the moisture content and using smaller particles, it is possible to exploit the heat value of oil sludge.
 

کلیدواژه‌ها [English]

  • Refinery oily-sludge
  • Pulverized solid fuel combustion
  • Particle diameter
  • Moisture content
  • Fuel mass flow rate
  1. G. Hu, J. Li and G. Zeng, “Recent Development in the Treatment of Oily Sludge from Petroleum Industry: A Review," Journal of Hazardous Materials, 261, 2013, pp. 470-490.
  2. B. Cui, F. Cui, G. Jing, S. Xu, W. huo and S. Lui, “Oxidation of Oily sludge in Supercritical Water,” Journal of Hazardous Materials, 165, 2009, pp. 511-517.
  3. G. Jing, M. Luan, C. Han, T. Chen and H. Wang, “An Effective Process for Removing Organic Compounds from Oily Sludge Using Soluble Metallic Salt,” Journal of Industrial and Engineering Chemistry, 18, 2012, pp. 1446-1449.
  4. B. Leckner, L. E. Amand, K. Lücke and J. Werther, “Gaseous Emissions from Co-Combustion of Sewage Sludge and Coal/Wood in a Fluidized Bed,” Fuel, 83, 2004, pp. 477-486.
  5. T. Malkow, “Novel and Innovative Pyrolysis and Gasification Technologies for Energy Efficient and Environmentally Sound MSW Disposal,” Waste Manage, 24, 2004, pp. 53-79.
  6. P. Stasta, J. Boran, L. Bebar, P. Stehlik and J. Oral, “Thermal Processing of Sewage Sludge”, Applied Thermal Engineering, 26, 2006, pp. 1420-1426.
  7. P. Molcan, G. Lu, T. L. Bris, Y. Yan, B. Taupin and S. Caillat, “Characterization of Biomass and Coal Co-Firing on a 3 MWth Combustion Test Facility using Flame Imaging and Gas/Ash Sampling Techniques,” Fuel, 88, 2009, pp. 2328-2334.
  8. A. A. Bhuiyan and J. Naser, “Computational Modeling of Co-Firing of Biomass with Coal under Oxy-Fuel Condition in a Small Scale Furnace,” Fuel, 143, 2015, pp. 455-466.
  9. L. Lu, T.M. Ismail, Y, Jin, M. El-Salam and K. Yoshikawa, “Numerical and Experimental Investigation on Co-Combustion Characteristics of Hydrothermally Treated Municipal Solid Waste with Coal in a Fluidized Bed,” Fuel Processing Technology, 154, 2016, pp. 52-65.
  10. R. Weber, T. Kupka and K. Zaja, “Jet Flames of a Refuse Derived Fuel,” Combustion and Flame, 156, pp. 922–927, 2009.
  11. J. Pallares, A. Gil, C. Cortes and C. Herce, “Numerical Study of Co-Firing Coal and Cynara Cardunculus in a 350 MWe Utility Boiler,” Fuel Processing Technology, 90, 2009, pp. 1207-1213.
  12. H. H. Liakos, K. N. Thoelogos, A. G. Boundovis and N. C. Markatos, “Pulverized Coal Char Combustion: The Effect of Particle Size on Burner Performance,” Applied Thermal Engineering, 18, 1998, pp. 981-989.
  13. A. Elfasakhany, L. Tao, B. Espenas, J. Larfeldt and X. S. Bai, “Pulverised Wood Combustion in a Vertical Furnace: Experimental and computational Analyses,” Applied Energy, 112, 2013, pp. 454-464.
  14. L. Ma, J. M. Jones, M. Pourkashanian and A. Williams, “Modelling the Combustion of Pulverized Biomass in an Industrial Combustion Test Furnace,” Fuel, 86, 2007, pp. 1959-1965.
  15. C. Yin, S. K. Kær, L. Rosendahl and S. L. Hvid, “Co-Firing Straw with Coal in a Swirl-Stabilized Dual-Feed Burner: Modeling and Experimental Validation,” Bio Resource Technology, 101, 2010, pp. 4169-4178.
  16. M. Agraniotis, N. Nikolopoulos, P. Grammelis and E. Kakaras, “Numerical Investigation of Solid Recovered Fuels’ Co-Firing with Brown Coal in Large Scale Boilers - Evaluation of Different Co-Combustion Modes,” Fuel, 89, 2010, pp. 3693-3709.
  17. C. Yin, L. Rosendahl and S. K. Kær, “Towards a Better Understanding of Biomass Suspension Co-Firing Impacts Via Investigating a Coal Flame and a Biomass Flame in a Swirl-Stabilized Burner Flow Reactor under Same Conditions,” Fuel Processing Technology, 98, 2012, pp. 65-73.
  18. A. Kardgar, Numerical combustion simulation of refused derived fuels (RDF) to investigate their combustion parameters, M.S. Thesis, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, 2013. (In Persian)
  19. H. Lu, E. Ip, J. Scott, P. Foster, M. Vickers and L. L. Baxter, “Effects of Particle Shape and Size on Devolatilization of Biomass Particle,” Fuel, 89, 2010, pp. 1156-1168.
  20. I. Bonefacic, B. Frankovic and A. Kazagic, “Cylindrical Particle Modeling in Pulverized Coal and Biomass Co-Firing Process,” Applied Thermal Engineering, 78, 2015, pp. 74-81.
  21. S. R. Gubba, L. Ma, M. Pourkashanian and A. Williams, “Influence of Particle Shape and Internal Thermal Gradients of Biomass Particles on Pulverized Coal/Biomass Co-Fired Flames,” Fuel Processing Technology, 92, 2011, pp. 2185-2195.
  22. S. R. Gubba, D.B. Ingham, K.J. Larsen, L. Ma, M. Pourkashanian, H. Z. Tan, A. Williams and H. Zhou, “Numerical Modeling of the Co-Firing of Pulverized Coal and Straw in a 300 MWe Tangentially Fired Boiler,” Fuel Processing Technology, 104, 2012, pp. 181-188.
  23. L. Zhou, X. Jian and J. Liu, “Characteristics of Oily Sludge Combustion in Circulating Fluidized Beds,” Journal of Hazardous Materials, 170, 2009, pp. 175-179.
  24. J. Liu, X. Jiang, L. Zhou, H. Wang and X. Han, “Co-Firing of Oil Sludge with Coal–Water Slurry in an Industrial Internal Circulating Fluidized Bed Boiler,” Journal of Hazardous Materials, 167, 2009, pp. 817-823.
  25. S. S. Hou, M. C. Chen and T. H. Lin, “Experimental Study of the Combustion Characteristics of Densified Refuse Derived Fuel (RDF-5) Produced from Oil Sludge,” Fuel, 116, 2014, pp. 201-207.
  26. M. Agraniotis, Coal Substitution of Alternative and Support in Fuel Boilers for Pulverized Fuel CO2 Emission Reduction, PhD Thesis, School of Mechanical Engineering, National Technical University of Athens, 2010.
  27. H. Ettouati, A. Boutoub and H. Benticha, “Radiative Heat Transfer in Pulverized Coal Combustion: Effects of Gas and Particles Distributions,” Turkish Journal of Engineering & Environmental Sciences, 31, 2007, pp. 345-353.
  28. ANSYS FLUENT Theory Guide, Version 14, Ansys Inc., USA, 2011.
  29. F. Tabet and I. Gökalp, “Review on CFD Based Models for Co-Firing Coal and Biomass,” Renewable and Sustainable Energy Reviews, 51, 2015, pp. 1101-1114.
  30. R. C. Borah, P. Ghosh, and P. G. Rao, “A Review on Devolatilization of Coal in Fluidized Bed,” International Journal of Energy Research, 35, 2011, pp. 929-963.
  31. B. Miller and D. Tillman, Combustion Engineering Issues for Solid Fuel, First Edition, Academic Press, USA, 2008.
  32. M. Nazemand O. Tavakoli, “Bio-Oil Production from Refinery Oily Sludge Using Hydrothermal Liquefaction Technology,” Journal of Supercritical Fluids, 127, 2017, pp. 33-40.
  33. A. Shirneshan and H. Jamalvand, “Numerical investigation of Combustion of Biomass, Methane, and Gasoil Fuels and Emissions from a Furnace Chamber” Energy and Policy Research, 3, 2016, pp. 19-26.
  34. M. L. Holtmeyer, B. M. Kumfer and R. L. Axelbaum, “Effects of Biomass Particle Size During Cofiring under Air-Fired and Oxyfuel Conditions,” Applied Energy, 93, 2012, pp. 606-613.