حذف آلاینده دی اکسید گوگرد از گازهای احتراق از طریق واکنش کاتالیستی و تبدیل آن به گوگرد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشگاه تربیت مدرس دانشکده مهندسی شیمی

3 دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر

4 استاد دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر

5 واحد تحقیق و توسعه، شرکت مس سرچشمه، کرمان، ایران

چکیده

در این تحقیق، روش جدید برای حذف کاتالیستی دی ­اکسیدگوگرد از گازهای­ های حاصل از احتراق بررسی شد. آلومینا، آلومینا-مس و آلومینا-مولیبدن به­ عنوان کاتالیست برای واکنش دی اکسید گوگرد با متان و تبدیل آن به محصول مناسب سولفور آزمایش شد و نتایج آن­ها ازلحاظ میزان تبدیل و انتخاب­ پذیری با یکدیگر مقایسه شد. تاثیر دما، نسبت خوراک ورودی (SO2/CH4) و طول عمر کاتالیست بررسی شد. بررسی تاثیر دما در محدوده 550-800 درجه سانتی­گراد نشان داد واکنش به ­شدت وابسته به دماست. عملکرد کاتالیست­ های با مس و مولیبدن نسبت به کاتالیست آلومینا به­ شدت بهبود پیدا کرد و در بین همه کاتالیست­ ها، کاتالیست آلومینا-مس(10%) بهترین عملکرد را هم ازنظر میزان تبدیل و هم انتخاب ­پذیری از خود نشان داد. این کاتالیست در دمای 750 درجه سانتیگراد به­ میزان تبدیل 5/99 درصد و انتخاب ­پذیری بیش از 5/99 درصد رسید. تاثیر نسبت خوراک SO2/CH4 از 1 تا 3 بررسی و مشاهده شد که بهترین عملکرد کاتالیست ­ها در نسبت خوراک برابر مقدار استوکیومتری یعنی 2 است. همچنین، بررسی طول عمر کاتالیست نشان داد کاتالیست­ ها در زمان 5 ساعت پایداری بسیار مناسبی برای واکنش دارند.

کلیدواژه‌ها

موضوعات


 

      D. Davis and D. Kemp, Kirk-OthmerEncyclopedia of Chemical Technology, Fourth Edition, New York, Wiley, 1991.

2.   H. M. Lee and J. D. Han, “Catalytic reduction of sulfur dioxide by carbon monoxide over nickel and lanthanum- nickel supported on alumina,” Industrial & engineering chemistry research, 41, 2002, pp. 2623-2629.

3.   G. B. Han, N. K. Park, S. H. Yoon, and T. J. Lee, “Investigation of catalytic reduction of sulfur dioxide with carbon monoxide over zirconium dioxide catalyst for selective sulfur recovery,” Industrial & Engineering Chemistry Research, 47, 2008, pp. 1427-1434.

 4.  C. L. Chen, C. H. Wang, and H. S. Weng, “Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur,” Chemosphere, 56, 2004, pp. 425-431.

5.   G. B. Han, N. K. Park, S. H. Yoon, T. J. Lee, and G. Y. Han, “Direct Reduction of Sulfur Dioxide to Elemental Sulfur with Hydrogen over Sn-Zr-Based Catalysts,” Industrial & Engineering Chemistry Research, 47, 2008.  pp. 4658-4664.

 6.  E. Humeres, R. F. Moreira, and B. P. Maria da Gloria, “Reduction of SO2 on different carbons,” Carbon, 4, 2002, pp. 751-760.

7.   Y. Jin, Q. Yu, and S. G. Chang, “Reduction of sulfur dioxide by syngas to elemental sulfur over ironbased mixed oxide supported catalyst,Environmental progress, 16, pp. 1-8 , 1997

 8.  J. J. Helstrom and G. A. Atwood, “The Kinetics of the Reaction of Sulfur Dioxide with Methane over a Bauxite Catalyst,” Industrial & Engineering Chemistry Process Design and Development, 17, 1978, pp. 114-117.

9.   A. Bobrin, V. Anikeev, A. Yermakova, and V. Kirillov, “High-temperature reduction of SO2 by methane at various CH4/SO2 ratios,” Reaction Kinetics and Catalysis Letters, 40, pp. 363-367,1989.

10. J. Sarlis and D. Berk, “Reduction of sulfur dioxide with methane over activated alumina,” Industrial & engineering chemistry research, 27, 1988, pp. 1951-1954.

11. A. Bobrin, V. Anikeev, A. Yermakova, V. Zheivot, and V. Kirillov, “Kinetic studies of high-temperature reduction of sulfur dioxide by methane,” Reaction Kinetics and Catalysis Letters, 40, 1989, pp. 357-362.

12. D. J. Mulligan and D. Berk, “Reduction of sulfur dioxide over alumina-supported molybdenum sulfide catalysts,” Industrial & engineering chemistry research, 31, 1992, pp. 119-125.

13. D. J. Mulligan, K. Tam, and D. Berk, “A study of supported molybdenum catalysts for the reduction of SO2 with CH4: Effect of sulphidation method,” The Canadian Journal of Chemical Engineering, 73, 1995, pp. 351-356.

14. T. S. Wiltowski, K. Sangster, and W. S. O'Brien, “Catalytic reduction of SO2 with methane over molybdenum catalyst,” Journal of Chemical Technology and Biotechnology, 67, 1996, pp. 204-212.

15.  J. Sarlis and D. Berk, “Reduction of sulphur dioxide by methane over transition metal oxide catalysts,” Chemical Engineering Communications, 140, 1995, pp. 73-85.

16. X. Zhang, D. O. Hayward, C. Lee, and D. M. P. Mingos, “Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS 2 catalysts," Applied Catalysis B: Environmental, 33, 2001, pp. 137-148.

 17. D. J. Mulligan and D. Berk, "Reduction of sulfur dioxide with methane over selected transition metal sulfides," Industrial & engineering chemistry research, 28, 1989, pp. 926-931.

18. N. Shikina, S. Khairulin, S. Yashnik, T. Teryaeva, and Z. Ismagilov, “Direct Catalytic Reduction of SO2 by CH4 over Fe-Mn Catalysts Prepared by Granulation of Ferromanganese Nodules,” Eurasian Chemico-Technological Journal, 17, 2015, pp. 129-136.

19. J. J. Yu, Q. Yu, Y. Jin, and S. G. Chang, "Reduction of sulfur dioxide by methane to elemental sulfur over supported cobalt catalysts," Industrial & engineering chemistry research, 36, 1997, pp. 2128-2133.

20. T. Zhu, A. Dreher, and M. Flytzani-Stephanopoulos, “Direct reduction of SO 2 to elemental sulfur by methane over ceria-based catalysts,” Applied Catalysis B: Environmental, 21, 1999, pp. 103-120.

21. T. Zhu, L. Kundakovic, A. Dreher, and M. Flytzani-Stephanopoulos, “Redox chemistry over CeO 2-based catalysts: SO 2 reduction by CO or CH 4,” Catalysis Today, 50, 1999, pp. 381-397.

22. M. Flytzani-Stephanopoulos, T. Zhu, and Y. Li, “Ceria-based catalysts for the recovery of elemental sulfur from SO 2-laden gas streams,” Catalysis Today, 62, 2000, pp. 145-158.

23. S. Mousavi, H. A. Ebrahim, and M. Edrissi, “Preparation of High Surface Area Ce/La/Cu and Ce/La/Ni Ternary Metal Oxides as Catalysts for the SO2 Reduction by CH4,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 44, 2014, pp. 881-890.

 24. S. E. Mousavi, H. Pahlavanzadeh, M. Khani, H. A. Ebrahim, and A. Mozaffari, “Selective catalytic reduction of SO2 with methane for recovery of elemental sulfur over nickel-alumina catalysts,” Reaction Kinetics, 124, 2018, pp. 669-682.

25. S. R. Yenumala, S. K. Maity and D. Shee, “Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst,” Reaction Kinetics, Mechanisms and Catalysis, 120, 2017, pp. 109-128.

26. H. A. Ebrahim and E. Jamshidi, “Synthesis gas production by zinc oxide reaction with methane: elimination of greenhouse gas emission from a metallurgical plant,” Energy conversion and management, 45, 2004, pp. 345-363.