حذف آلاینده دی اکسید گوگرد از گازهای احتراق از طریق واکنش کاتالیستی و تبدیل آن به گوگرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشگاه تربیت مدرس دانشکده مهندسی شیمی

3 دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر

4 استاد دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر

5 واحد تحقیق و توسعه، شرکت مس سرچشمه، کرمان، ایران

چکیده

در این تحقیق، روش جدید برای حذف کاتالیستی دی ­اکسیدگوگرد از گازهای­ های حاصل از احتراق بررسی شد. آلومینا، آلومینا-مس و آلومینا-مولیبدن به­ عنوان کاتالیست برای واکنش دی اکسید گوگرد با متان و تبدیل آن به محصول مناسب سولفور آزمایش شد و نتایج آن­ها ازلحاظ میزان تبدیل و انتخاب­ پذیری با یکدیگر مقایسه شد. تاثیر دما، نسبت خوراک ورودی (SO2/CH4) و طول عمر کاتالیست بررسی شد. بررسی تاثیر دما در محدوده 550-800 درجه سانتی­گراد نشان داد واکنش به ­شدت وابسته به دماست. عملکرد کاتالیست­ های با مس و مولیبدن نسبت به کاتالیست آلومینا به­ شدت بهبود پیدا کرد و در بین همه کاتالیست­ ها، کاتالیست آلومینا-مس(10%) بهترین عملکرد را هم ازنظر میزان تبدیل و هم انتخاب ­پذیری از خود نشان داد. این کاتالیست در دمای 750 درجه سانتیگراد به­ میزان تبدیل 5/99 درصد و انتخاب ­پذیری بیش از 5/99 درصد رسید. تاثیر نسبت خوراک SO2/CH4 از 1 تا 3 بررسی و مشاهده شد که بهترین عملکرد کاتالیست ­ها در نسبت خوراک برابر مقدار استوکیومتری یعنی 2 است. همچنین، بررسی طول عمر کاتالیست نشان داد کاتالیست­ ها در زمان 5 ساعت پایداری بسیار مناسبی برای واکنش دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal of sulfur dioxide pollutant from combustion gases through catalytic reaction and conversion that to sulfur

نویسندگان [English]

  • Seyyed Ebrahim Mousavi 1
  • Hassan Pahlavanzadeh 2
  • Masoud Khani 3
  • habib Ale Ebrahim 4
  • Abbas Mozaffari 5
1 Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
2 Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
3 Faculty of Chemical Engineering, Petrochemical center of Excellency, Amirkabir University of Technology, Tehran, Iran.
4 Faculty of Chemical Engineering, Petrochemical center of Excellency, Amirkabir University of Technology, Tehran, Iran.
5 Research and Development Unit, Sarcheshmah Copper Complex, Kerman, Iran.
چکیده [English]

I
 
In this work, new method for removal of sulfur dioxide from combustion gases was studied. Al2O3, Cu-Al2O3, and Mo-Al2O3 were examined as the catalysts for reduction of sulfur dioxide to elemental sulfur with methane and their performances were compared in terms of SO2 conversion and selectivity. The effects of temperature, SO2/CH4 molar ratio, and reaction time on SO2 reduction were studied. The operating temperature range was 550–800 °C and it was observed that the reaction is strongly temperature dependent. Performance of the catalyst extremely enhanced when molybdenum and copper were added as promoters, and the Al2O3-Cu (10%) catalyst showed the best performance between of all the catalysts in terms of SO2 conversion and selectivity. For the Al2O3-Co(10%) as the best catalyst, the conversion of 99.5% and selectivity more than 99.5% were achieved at 750 °C. Effect of molar feed ratio of SO2/CH4= 3-1 was studied and stoichiometric feed ratio showed the best performance. Also, investigation of reaction time for catalysts showed a good long-term stability for SO2 reduction with methane in 5 hours.
 
 
 

کلیدواژه‌ها [English]

  • SO2 removal from combustion gases
  • Catalytic reduction of SO2
  • alumina-copper
  • alumina-molybdenum
 
      D. Davis and D. Kemp, Kirk-OthmerEncyclopedia of Chemical Technology, Fourth Edition, New York, Wiley, 1991.
2.   H. M. Lee and J. D. Han, “Catalytic reduction of sulfur dioxide by carbon monoxide over nickel and lanthanum- nickel supported on alumina,” Industrial & engineering chemistry research, 41, 2002, pp. 2623-2629.
3.   G. B. Han, N. K. Park, S. H. Yoon, and T. J. Lee, “Investigation of catalytic reduction of sulfur dioxide with carbon monoxide over zirconium dioxide catalyst for selective sulfur recovery,” Industrial & Engineering Chemistry Research, 47, 2008, pp. 1427-1434.
 4.  C. L. Chen, C. H. Wang, and H. S. Weng, “Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur,” Chemosphere, 56, 2004, pp. 425-431.
5.   G. B. Han, N. K. Park, S. H. Yoon, T. J. Lee, and G. Y. Han, “Direct Reduction of Sulfur Dioxide to Elemental Sulfur with Hydrogen over Sn-Zr-Based Catalysts,” Industrial & Engineering Chemistry Research, 47, 2008.  pp. 4658-4664.
 6.  E. Humeres, R. F. Moreira, and B. P. Maria da Gloria, “Reduction of SO2 on different carbons,” Carbon, 4, 2002, pp. 751-760.
7.   Y. Jin, Q. Yu, and S. G. Chang, “Reduction of sulfur dioxide by syngas to elemental sulfur over ironbased mixed oxide supported catalyst,Environmental progress, 16, pp. 1-8 , 1997
 8.  J. J. Helstrom and G. A. Atwood, “The Kinetics of the Reaction of Sulfur Dioxide with Methane over a Bauxite Catalyst,” Industrial & Engineering Chemistry Process Design and Development, 17, 1978, pp. 114-117.
9.   A. Bobrin, V. Anikeev, A. Yermakova, and V. Kirillov, “High-temperature reduction of SO2 by methane at various CH4/SO2 ratios,” Reaction Kinetics and Catalysis Letters, 40, pp. 363-367,1989.
10. J. Sarlis and D. Berk, “Reduction of sulfur dioxide with methane over activated alumina,” Industrial & engineering chemistry research, 27, 1988, pp. 1951-1954.
11. A. Bobrin, V. Anikeev, A. Yermakova, V. Zheivot, and V. Kirillov, “Kinetic studies of high-temperature reduction of sulfur dioxide by methane,” Reaction Kinetics and Catalysis Letters, 40, 1989, pp. 357-362.
12. D. J. Mulligan and D. Berk, “Reduction of sulfur dioxide over alumina-supported molybdenum sulfide catalysts,” Industrial & engineering chemistry research, 31, 1992, pp. 119-125.
13. D. J. Mulligan, K. Tam, and D. Berk, “A study of supported molybdenum catalysts for the reduction of SO2 with CH4: Effect of sulphidation method,” The Canadian Journal of Chemical Engineering, 73, 1995, pp. 351-356.
14. T. S. Wiltowski, K. Sangster, and W. S. O'Brien, “Catalytic reduction of SO2 with methane over molybdenum catalyst,” Journal of Chemical Technology and Biotechnology, 67, 1996, pp. 204-212.
15.  J. Sarlis and D. Berk, “Reduction of sulphur dioxide by methane over transition metal oxide catalysts,” Chemical Engineering Communications, 140, 1995, pp. 73-85.
16. X. Zhang, D. O. Hayward, C. Lee, and D. M. P. Mingos, “Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS 2 catalysts," Applied Catalysis B: Environmental, 33, 2001, pp. 137-148.
 17. D. J. Mulligan and D. Berk, "Reduction of sulfur dioxide with methane over selected transition metal sulfides," Industrial & engineering chemistry research, 28, 1989, pp. 926-931.
18. N. Shikina, S. Khairulin, S. Yashnik, T. Teryaeva, and Z. Ismagilov, “Direct Catalytic Reduction of SO2 by CH4 over Fe-Mn Catalysts Prepared by Granulation of Ferromanganese Nodules,” Eurasian Chemico-Technological Journal, 17, 2015, pp. 129-136.
19. J. J. Yu, Q. Yu, Y. Jin, and S. G. Chang, "Reduction of sulfur dioxide by methane to elemental sulfur over supported cobalt catalysts," Industrial & engineering chemistry research, 36, 1997, pp. 2128-2133.
20. T. Zhu, A. Dreher, and M. Flytzani-Stephanopoulos, “Direct reduction of SO 2 to elemental sulfur by methane over ceria-based catalysts,” Applied Catalysis B: Environmental, 21, 1999, pp. 103-120.
21. T. Zhu, L. Kundakovic, A. Dreher, and M. Flytzani-Stephanopoulos, “Redox chemistry over CeO 2-based catalysts: SO 2 reduction by CO or CH 4,” Catalysis Today, 50, 1999, pp. 381-397.
22. M. Flytzani-Stephanopoulos, T. Zhu, and Y. Li, “Ceria-based catalysts for the recovery of elemental sulfur from SO 2-laden gas streams,” Catalysis Today, 62, 2000, pp. 145-158.
23. S. Mousavi, H. A. Ebrahim, and M. Edrissi, “Preparation of High Surface Area Ce/La/Cu and Ce/La/Ni Ternary Metal Oxides as Catalysts for the SO2 Reduction by CH4,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 44, 2014, pp. 881-890.
 24. S. E. Mousavi, H. Pahlavanzadeh, M. Khani, H. A. Ebrahim, and A. Mozaffari, “Selective catalytic reduction of SO2 with methane for recovery of elemental sulfur over nickel-alumina catalysts,” Reaction Kinetics, 124, 2018, pp. 669-682.
25. S. R. Yenumala, S. K. Maity and D. Shee, “Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst,” Reaction Kinetics, Mechanisms and Catalysis, 120, 2017, pp. 109-128.
26. H. A. Ebrahim and E. Jamshidi, “Synthesis gas production by zinc oxide reaction with methane: elimination of greenhouse gas emission from a metallurgical plant,” Energy conversion and management, 45, 2004, pp. 345-363.