بررسی عددی پدیده دوده در یک موتور اشتعال تراکمی

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

ا
امروزه، بخش قابل توجهی از انرژی حاصل احتراق سوخت­ های هیدروکربنی است. بنابراین، تلاش برای بهبود و اصلاح فرایندهای احتراقی و کاهش محصولات احتراق امری بسیار حائز اهمیت است. در این میان، تلاش برای کاهش انتشار دوده، به­ عنوان یکی از آلاینده­ های مهم که اثرات جبران­ ناپذیری بر سلامت انسان دارد، سال­هاست که آغاز شده و از جهات گوناگون بررسی شده است. در این مقاله، پدیده تشکیل دوده، با استفاده از یکی از مدل­های چندمرحله­ای و پرکاربرد ارائه ­شده برای تشکیل و اکسیداسیون دوده، مدل شده است. مدل­ سازی عددی دوده با استفاده از کد کیوا نسخه 3V انجام شده است. نتایج حاصل از شبیه ­سازی با نتایج تجربی فشار محفظه احتراق و مقدار دوده تشکیل­ شده در        یک موتور دوزمانه دیزل با سیستم تزریق مستقیم اعتبارسنجی شده است. مشخصه­ های دوده، مانند غلظت گونه­ های تشکیل­ دهنده دوده، غلظت، تعداد، قطر، جرم، حجم و کسر حجمی ذرات دوده و زمان و مکان توده دوده در داخل سیلندر به ­عنوان خروجی بررسی شده است که با نتایج ذکرشده در منابع تطابق خوبی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical investigation of soot phenomenon in a CI engine

نویسندگان [English]

  • Ali Nassiri Toosi
  • Atieh Safaei Arshi
Automotive Engineering Dept., Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Numerical investigation of soot phenomenon in a CI engine
 
Ali Nassiri Toosi1* and Atieh Safaei Arshi 2
1-   Department of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran, anasiri@iust.ac.ir
2-   Department of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran, at_safaei@auto.iust.ac.ir
*Correspondent author
 (Received: 2018.04.06, Received in revised form: 2018.08.06, Accepted: 2018.09.10)
 
Nowadays, a considerable part of the energy is the result of the combustion of hydrocarbon fuels in combustion systems. Therefore, efforts to improve and modify combustion processes and reduce the undesirable byproducts are of great concern. Among all the efforts made to improve the performance of combustion systems including reduction of pollutants, reduction of soot emissions has received special attention. This is due to the fact that soot emission is one of the major pollutants that have irreparable effects on human health, and affects the quality of life. Since the first step to reduce the soot pollution is to provide a comprehensive overview of its structure, mechanisms and also the effective parameters of its production, in this study, the phenomenon of soot formation and oxidation are investigated using one of the multi-step models presented for the formation and oxidation of soot to identify the behavior and parameters affecting soot formation. Numerical modeling of this phenomenon is carried out using KIVA-3V code. The results of the simulation are validated using the experimental data of pressure and the amount of soot formed in the combustion chamber of a two-stroke diesel engine with a direct injection system. Soot characteristics i.e., mass, volume and volume fraction of soot, species concentration, soot concentration, particle number density, average particle diameter, and the time and place of soot content in the combustion chamber are discussed as outputs of the model. The results show good agreement with the experimental data.

کلیدواژه‌ها [English]

  • Combustion
  • Pollutant
  • Soot
  • Numerical modeling

1.  J. Xi and B. J. ZHong, “Review soot in diesel combustion systems,” Chem Eng Technol, 6, 2006, pp. 65-73.

2.  D. S. Kim, H. Omidvarborna and A. Kumar, “Recent studies on soot modeling for diesel combustion,” Renewable and Sustainable Energy Reviews, 48, 2015, pp. 635-647.

3.  B. Oger, Soot Characterization in Diesel Engine Using Laser-Induecd Incandescence, PhD Thesis, School of Engineering, University of Brighton, April 2012.

4.  World Health Organization report, Ambient air pollution: a global assessment of exposure and burden of disease, Switzerland, 2016.

 5.  A. Fusco, A. L. Knox-Kelecy and D. E. Foster, “Application of a phenomenological soot model to diesel engine combustion,” Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA), 3, pp. 571-576, Yokohama, Japan, 1994.

6.  F. Tao, V. I. Golovvitchev and J. Chomiak, “Application of complex chemistry to investigate the combustion zone structure of DI diesel sprays under engine-like conditions (DE-3) diesel engine combustion 3-modeling,” Proceedings of the Conference on Modeling And Diagnostics for Advanced Engine Systems (COMODIA), 5, pp. 92-100 , Nagoya, Japan, 2001.

7.  G. Vishwanathan and R. D. Reitz, “Application of a semi-detailed soot modeling approach for low temperature diesel combustion,” International multidimensional engine modeling user's group meeting at the SAE congress, Detroit (MI), 2010.

8.  S. Sukumaran, C. Van Huynh and S. C. Kong, “Modeling soot emissions in diesel spray using multistep soot model with detailed PAH chemistry,” International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress, 23 April, 2012.

9.  X. Cheng, L. Chen, F. Yan and S. Dong, “Study on soot formation characteristics in the diesel combustion process based on an improved detailed soot model,” Energy Conversion and Management, 75, 2013, pp.1-10.

10.  Z. Wang, L. Li, J. Wang and R. D. Reitz, “Effect of biodiesel saturation on soot formation in diesel engine,” Fuel, 175, 2016, pp. 240-248.

11.  W. Yang and et al., “Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels,” Applied Energy, 211, 2018, pp. 187-193.

12.  K. Poorghasemi, F. Ommi, V. Esfahanian, H. Tanabi, “Investigation on NO and Soot Reduction Mechanisms in a DI Diesel Engine by Split Injection Strategy,” Fuel and Combustion, 3, No. 2, 2010, pp. 91-103. (in Persian)

13.  M. Pishgooie, S. M. Hosseini Sarvari and S. H. Mansouri, “Radiation effect in a compression ignition internal combustion engine combustion chamber assuming gray media, Modares Mechanical Engineering, 17, No. 12, 2018, pp. 286-296. (in Persian)

14.  T. Senčić, V. Medica and O. Bukovac, “Soot model validation and development,” Elsevier Advanced Engineering Journal, 4, No. 1, 2010, pp .75-86.

15.  C. Crula, Combustion processes in a Diesel Engine, PhD Thesis, School of Engineering, University of Brighton, December 2002.

16.  A. A. Amsden, KIVA-3V: A Block-tructured KIVA Program for Engines with Vertical or Canted Valves, Alamos National Laboratory Report LA-13313- MS, Los Alamos, NM, 1997.

17.  V. F. Surovikin, “Analytical description of the processes of nucleus-formation and growth of particles of carbon black in the thermal decomposition of aromatic hydrocarbons in the gas phase,” Solid Fuel Chemistry, 10, No. 1, pp. 92-101, 1976.

18.  J. Nagle and R. F. Strickland-Constable, “Oxidation of carbon between 1000-2400 °C,” Carbon, 1, 1964, pp. 333-334

19.  F. Tao, R. D. Reitz, D. E. Foster, Y. Liu, “Nine-step phenomenological diesel soot model validated over a wide range of engine conditions, International Journal of Thermal Sciences, 48, 2009, pp.1223-1234.

20.  K. M. Leung, R. P. Lindstedt and W. P. Jones, “A simplified reaction mechanism of soot formation in non-premixed flames, Combustion and Flame, 87, 1991, pp. 289-305.

21.  A. Kazakov and D. E. Foster, “Modeling of soot formation during DI diesel combustion using a multi-step phenomenological model,” SAE Paper 982463, 1998.

22.  V. Rao and D. Honnery, “Application of a multi-step soot model in a thermodynamic diesel engine model,” Fuel, 135, 2014, pp. 269-278.

23.  F. Tao, D. E. Foster, R. D. Reitz, “Soot structure in a conventional non-premixed diesel flame,” SAE Paper 2006-01-0196,