مدل سازی و بررسی پارامترهای تولید بیودیزل از هسته خرما به کمک روش های مرسوم، ماکروویو و فراصوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مکانیک بیوسیستم، دانشگاه فردوسی مشهد، مشهد

2 گروه بیوسیستم، دانشگاه فردوسی مشهد

3 دانشیار، مهندسی مکانیک بیوسیستم، دانشگاه فردوسی مشهد، مشهد

4 استادیار، مکانیک بیوسیستم، دانشگاه فردوسی مشهد، مشهد

چکیده

در این تحقیق، پارامترهای موثر بر میزان تولید بیودیزل از روغن هسته خرما به سه روش حرارت‌دهی مرسوم، ماکروویو و فراصوت بررسی شد. به­ منظور انجام فرایند تولید بیودیزل، ابتدا واکنش استری با کاتالیست اسید سولفوریک انجام شد تا میزان اسید چرب آزاد موجود در روغن هسته خرما به­ میزان استاندارد برای واکنش ترانس ‌استریفیکاسیون کاهش یابد. نتایج نشان داد که 1 درصد وزنی کاتالیست و نسبت مولی الکل به روغن 8 تا 9 میزان بهینه برای هر سه روش تولید بیودیزل بود. به ­عبارت دیگر، روش مورد استفاده تاثیری بر میزان کاتالیست و متانول مصرفی در فرایند نداشت. در روش حرارت‌دهی مرسوم دمای°C  56 به ­عنوان دمای بهینه انتخاب شد و توان تقریبا 300 وات، در هر دو روش ماکروویو و فراصوت، بالاترین بازده را فراهم کرد. اما تفاوت اصلی در کاهش زمان واکنش بود، به­ طوری که زمان واکنش از حدود 90 دقیقه برای رسیدن به نقطه تعادل در روش مرسوم به هفت­ونیم دقیقه در روش فراصوت و تنها 3 دقیقه در روش ماکروویو کاهش یافت. ازلحاظ مصرف انرژی، روش ماکروویو مناسب‌تر از روش فراصوت شناخته شد. نتایح مدل‌سازی نیز نشان داد که مدل‌های پیشنهادی مطابقت مناسبی با مقدار آزمایشگاهی دارند. نسبت مولی متانول/روغن و دما در روش مرسوم، میزان کاتالیست و متانول در روش ماکروویو، و توان امواج فراصوت در روش فراصوت، بیشترین تاثیر را بر تبدیل روغن هسته خرما به بیودیزل داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Assessment the Effective Parameters of Biodiesel Production from Date Seed Oil via Conventional, Microwave and Ultrasonic methods

نویسندگان [English]

  • HHassanian Abdulrahman Karim Allami 1
  • Mohammad Tabasizadeh 2
  • Abdolali Farzad 3
  • Abbas rohani 4
1 Department of Mechanical Biosystems, Ferdowsi University of Mashhad, Mashhad, Iran
2 1. Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
3 Department of Mechanical Biosystems, Ferdowsi University of Mashhad, Mashhad, Iran
4 Department of Mechanical Engineering, Tehran University, Tehran, Iran
چکیده [English]

In this study, the effective parameters on the amount of biodiesel production from date seed oil via three heating methods of conventional, microwave, and ultrasonic were assessed. In order to carry out the biodiesel production process, the esterification reaction using sulfuric acid as catalyst was firstly performed to reduce the free fatty acid content of date seed oil to the standard amount for transesterification reaction. The results showed that 1 wt.% of catalyst and 8-9 molar ratios of methanol to oil were the optimum amount for all of biodiesel production methods. In other words, utilized method has no effect on the amount of catalyst and methanol in the reaction. The temperature of 56 °C was selected as an optimum temperature in the conventional heating method and the power of around 300 W provided the highest yield in both microwave and ultrasonic methods. However, the major different was in the reduction of reaction time. It decreased from 90 min for conventional method to equilibrium point 7.5 and 3 min for ultrasonic and microwave methods, respectively. According to energy consumption, microwave method was known more suitable than ultrasonic method. The results of modeling presented that suggested models were in good agreement with the experimental values. Methanol/oil molar ratio and reaction temperature in the conventional method, amount of catalyst and methanol in the microwave method and power of ultrasonic waves in the ultrasonic method had the highest influence on the conversion of date seed oil to biodiesel.
 

کلیدواژه‌ها [English]

  • Date seed oil
  • Biodiesel
  • Transesterification
  1. W. M. Antunes, C. d. O. Veloso and C. A. Henriques, “Transesterification of soybean oil with methanol catalyzed by basic solids,” Catalysis Today, 133-135, 2008, pp. 548-554.
  2. S. Furuta, H. Matsuhahashi and K. Arata, “Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure,” Catalysis Communications, 5,2004, pp. 721-723.
  3. D. E. López, J. G. Goodwin Jr, D. A. Bruce and E. Lotero, “Transesterification of triacetin with methanol on solid acid and base catalysts,” Applied Catalysis A: General, 295,2005, pp. 97-105.
  4. S. Glisic, I. Lukic and D. Skala, “Biodiesel synthesis at high pressure and temperature: Analysis of energy consumption on industrial scale,” Bioresource Technology, 100,2009, pp. 6347-6354.
  5. R. Arroyo, C. Cuesta, C. Garrido-Polonio, S. López-Varela and F. Sánchez-Muniz, “High-performance size-exclusion chromatographic studies on polar components formed in sunflower oil used for frying,” Journal of the American Oil Chemists' Society, 69, 199, pp. 557-563.
  6. E. Yazdanian, N. Gholipour and A. Kamran-Pirzaman, “Effect of Important Parameters on Biodiesel Production using Heterogeneous Potassium Carbonate/Alumina Catalyst and Rapeseed Oil,” Fuel and Combustion, 10, 2017, pp. 17-27.
  7. N. Yari, L. Naderloo and S. M. Safieddin Ardebili, “Biodiesel production from fish waste oil by combination of mechanical stirrer and microwave,” Fuel and Combustion, 10,2018, pp. 1-14.
  8. I. K. Hong, H. Jeon, H. Kim and S. B. Lee, “Preparation of waste cooking oil based biodiesel using microwave irradiation energy,” Journal of Industrial and Engineering Chemistry, 42,2016, pp. 107-112.
  9. N. G. Muralidharan and J. Ranjitha, “Microwave assisted biodiesel production from dairy waste scum oil using alkali catalysts,”  International Journal of ChemTech Research, 8,2015, pp. 167-174.
  10. V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng and N. Nirmalakhandan, “Microwave energy potential for biodiesel production,” Sustainable Chemical Processes, 1,2013, pp. 1-5.
  11. M. R. Sabzi Maleki, B. Ghobadian, M. Mazlom Farsyab, M. Dehghani Sofi and G. Najafi, “Optimization of Biodiesel production reaction from castor oil using ultrasonic irradiation and response surface method,” Fifth Conference of Fuel and Combustion of Iran, Tehran, 1392.
  12. G. Kumar, V. Singh and D. Kumar, “Ultrasonic-assisted continuous methanolysis of Jatropha curcas oil in the appearance of biodiesel used as an intermediate solvent,” Ultrasonics Sonochemistry, 39,2017, pp. 384-391.
  13. G. Kumar, “Ultrasonic-assisted reactive-extraction is a fast and easy method for biodiesel production from Jatropha curcas oilseeds,” Ultrasonics Sonochemistry, 37, 2017, pp. 634-639.
  14. M. Maghami, S. M. Sadrameli and B. Ghobadian, “Production of biodiesel from fishmeal plant waste oil using ultrasonic and conventional methods,” Applied Thermal Engineering,  75, 2015, pp. 575-579.
  15. A. Yazdani and M. Adibi, “Challange of production and application of biodiesel as alternative for fossil fuels,” Farayandno, 51,1394, pp. 5-24.
  16. B. Najafi and S. Faizollahzadeh Ardabil, “Effect of Fatty Acid Ethyl Esters in Biodiesel on Thermo-physical Properties,” Fuel and Combustion, 9,2017, pp. 121-133.
  17. B. Najafi, M. Torkian, M. A. Hejazi and A. A. Zamzamian, “Effect of microalgae biodiesel on performance parameters and exhaust emissions from IDI diesel engine,” Fuel and Combustion, 4,2012, pp. 29-42.
  18. M. A. Ali, T. A. Al-Hattab and I. A. Al-Hydary, “Extraction of date palm seed oil (phoenix dactylifera) by soxhlet apparatus,” International Journal of Advances in Engineering & Technology, 8,2015, pp. 261-271.
  19. E. I. Bello, B. Oguntuase, A. Osasona and T. I. Mohammed, “Characterization and Engine Testing of Palm Kernel Oil Biodiesel,” European Journal of Engineering and Technology, 3,2015, pp. 1-14.
  20. S. J. Ojolo, A. O. Adelaja and G. M. Sobamowo, “Production of Bio-Diesel from Palm Kernel Oil and Groundnut Oil,” Advanced Materials Research, 367, 2012, pp. 501-506.
  21. O. J. Alamu, M. A. Waheed and S. O. Jekayinfa, “Biodiesel production from Nigerian palm kernel oil: effect of KOH concentration on yield,” Energy for Sustainable Development, 11,2007, pp. 77-82.
  22. A. Aladetuyi, G. A. Olatunji, D. S. Ogunniyi, T. E. Odetoye and S. O. Oguntoye, “Production and characterization of biodiesel using palm kernel oil; fresh and recovered from spent bleaching earth,” Biofuel Research Journal, 1,2014, pp.  134-138.
  23. D. K. Kuwornoo and J. C. Ahiekpor, “Optimization of factors affecting the production of biodiesel from crude palm kernel oil and ethanol,” International journal of energy and environment, 1, 2010, pp. 675-682.
  24. S. Zullaikah, C. C. Lai, S. R. Vali and Y. H. Ju, “A two-step acid-catalyzed process for the production of biodiesel from rice bran oil,” Bioresource Technology, 96, 2005, pp. 1889-1896.
  25. B. Najafi and M. Khani, “Study of the effect of ehyl ester of sunflower oil and its differente mixture with diesel on the performance and emission parameters of a turbochargered direct injection diesel engine,” Fuel and Combustion,  4,2012, pp. 45-55.
  26. H. Nayebzadeh, N. Saghatoleslami and M. Tabasizadeh, “Application of Microwave Irradiation for Preparation of a KOH/Calcium Aluminate Nanocatalyst and Biodiesel,” Chemical Engineering & Technology, 40, 2017, pp. 1826-1834.
  27. N. S. Sarvestani, A. Rohani, A. Farzad and M. H. Aghkhani, “Modeling of specific fuel consumption and emission parameters of compression ignition engine using nanofluid combustion experimental data,” Fuel Processing Technology,  154, 2016, pp. 37-43.
  28. G. Vicente, M. Martínez and J. Aracil, “Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield,” Bioresource Technology, 98, 2007, pp. 1724-1733.
  29. M. Hashemzehi, N. Saghatoleslami and H. Nayebzadeh, “Microwave-assisted solution Combustion Synthesis of Spinel-type mixed Oxides for Esterification Reaction,” Chemical Engineering Communications, 204, 2016, pp. 415-423.
  30. M. Hojjat, H. Nayebzadeh, M. Khadangi-Mahrood and B. Rahmani-Vahid, “Optimization of process conditions for biodiesel production over CaO–Al2O3/ZrO2 catalyst using response surface methodology,” Chemical Papers, 71, 2016, pp. 689-698.
  31. J. Kakati, T. K. Gogoi and K. Pakshirajan, “Production of biodiesel from Amari (Amoora Wallichii King) tree seeds using optimum process parameters and its characterization,” Energy Conversion and Management, 135, 2017, pp. 281-290.
  32. Amish P. Vyas, Jaswant L. Verma and N. Subrahmanyam, “Effects of Molar Ratio, Alkali Catalyst Concentration and Temperature on Transesterification of Jatropha Oil with Methanol under Ultrasonic Irradiation,” Advances in Chemical Engineering and Science, 25, 2011, pp. 45-50.
  33. N. Porvosogi, A.-M. Nikbakht, S. Jafarmadar, M. Tabatabaei, S. A. H. Goli, Ali-AkbarHabibinia and M. Pakzad, “Effect of waste and bleaching earth oil derived biodiesel on diesel engine performance and emissions,” Fuel and Combustion, 5, 2014, pp. 35-45.
  34. S. MercyAkaagerger, S. O. Giwa, M. Ibrahim and A. Giwa, “Production of biodiesel from desert date seed oil,” International Journal of ChemTech Research,  9, 2016, pp. 453-463.
  35. O. J. Alamu, M. A. Waheed and S. O. Jekayinfa, “Effect of ethanol–palm kernel oil ratio on alkali-catalyzed biodiesel yield,” Fuel, 87, 2008, pp. 1529-1533.
  36. O. J. Alamu, T. A. Akintola, C. C. Enweremadu and A. E. Adeleke, “Characterization of palm-kernel oil biodiesel produced through NaOH-catalysed transesterification process,” Scientific Research and Essay, 7,2008, pp. 308-311.
  37. Z. Yaakob, B. H. Ong, M. N. Satheesh Kumar and S. K. Kamarudin, “Microwave-assisted transesterification of jatropha and waste frying palm oil,” International Journal of Sustainable Energy, 28, 2009, pp. 195-201.
  38. V. Lertsathapornsuk, P. Ruangying, R. Pairintra and K. Krisnangkura,“Direct conversion of used vegetable oil to biodiesel and its use as an alternative fuel for compression ignition engine,” First International Conference on Energy Network of Thailand, Chonburi, 2005.
  39. V. Lertsathapornsuk, R. Pairintra, K. Aryusuk and K. Krisnangkura, “Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator,” Fuel Processing Technology, 89, 2008, pp. 1330-1336.
  40. I. Worapun, K. Pianthong and P. Thaiyasuit, “Optimization of biodiesel production from crude palm oil using ultrasonic irradiation assistance and response surface methodology,” Journal of Chemical Technology & Biotechnology, 87, 2012, pp. 189-197.
  41. I. Choedkiatsakul, K. Ngaosuwan, G. Cravotto and S. Assabumrungrat, “Biodiesel production from palm oil using combined mechanical stirred and ultrasonic reactor,” Ultrasonics Sonochemistry, 21, 2014, pp. 1585-1591.
  42. B. Salamatinia, H. Mootabadi, I. Hashemizadeh and A. Z. Abdullah, “Intensification of biodiesel production from vegetable oils using ultrasonic-assisted process: Optimization and kinetic,” Chemical Engineering and Processing: Process Intensification, 73, 2013, pp. 135-143.