بررسی عددی تاثیر افزودن دی‌متیل‌اتر به متان بر عملکرد و آلایندگی موتور اشتعال تراکمی شارژ همگن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی نوشیروانی بابل

چکیده

احتراق اشتعال تراکمی شارژ همگن،  به­دلیل بازده حرارتی بالا و آلایندگی کم، به­عنوان نسل جدید موتورهای احتراق داخلی مورد توجه قرار گرفته است. کنترل این نوع احتراق دشوار است، زیرا این امر توسط سینتیک شیمیایی مخلوط هوا و سوخت صورت می­گیرد. در این مطالعه، یک مخلوط همگن از گاز طبیعی و هوا در یک موتور اشتعال تراکمی برای کاهش انتشار اکسیدهای نیتروژن و بهبود بهره­وری حرارتی استفاده و  برای کنترل زمان اشتعال و احتراق، مقدار کمی دی متیل اتر با گاز طبیعی مخلوط شد. یک مدل دینامیک سیالات محاسباتی سه بعدی همراه با سینتیک شیمیایی برای بررسی اثر دما، فشار، نسبت هم­ارزی بر احتراق و آلایندگی موتور اشتعال تراکمی سوخت همگن استفاده شد. نتایج شبیه­سازی نشان دادند با استفاده از این مخلوط می­توان موتور را در یک محدوده بار گسترده راه­اندازی کرد و با افزودن مقدار محدودی دی متیل اتر بازده حرارتی را افزایش داد. از نتایج مهم دیگر این مطالعه می­توان به بهبود زمان شروع احتراق، افزایش بیشینه فشار و کاهش چشمگیر انتشار اکسیدهای نیتروژن در اثر افزودن دی متیل اتر اشاره کرد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of adding DME to methane on HCCI combustion performance and emissions

نویسندگان [English]

  • hosein ezoji
  • Rouzbeh Shafaghat
  • Omid Jahanian
Department of Energy Conversion, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, IRAN
چکیده [English]

Homogeneous charge compression ignition (HCCI) is regarded as the next generation combustion trend in terms of high thermal efficiency and low emissions. It is difficult to control autoignition and combustion because they are controlled primarily by the chemical kinetics of air/fuel mixture. In this study, a homogeneous mixture of natural-gas and air was used in a compression ignition engine to reduce NOx emissions and improve thermal efficiency. In order to control ignition timing and combustion, a small amount of Dimethyl Ether (DME) was mixed with the natural-gas. In this paper, a multi-dimensional computational fluid dynamics (CFD) model coupled with chemical kinetics mechanisms was applied to investigate the effects of various temperatures, pressures, equivalence ratios and fuel compositions on the combustion performance and emission characteristics of an HCCI engine. The mixture could run the engine quietly and smoothly over a wide range of loads. Under the present test conditions, finite amount of DME was necessary in order to achieve ignition of the mixture. In addition, thermal efficiency was higher than that of methane fueled engine, when the DME proportion was optimized. NOx emissions were extremely low, however, the emissions of total unburned hydrocarbon were high.
 

کلیدواژه‌ها [English]

  • "HCCI"
  • "DME"
  • "fuel component"
  1. P. M. Najt and D. E. Foster, “Compression-ignited homogeneous charge combustion,” Society of Automotive Engineers, 830264, 1983. 
  2. M. Keshavarz and S. A. Jazayeri, “Performance of Homogenous Charge Compression Ignition (HCCI) engine with premixed methane/air supported by DME for electrical power generation application,” ASME Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers, 2006.
  3. T. W. Ryan and C. Matheaus, “Fuel requirements for HCCI engine operation,” Society of Automotive Engineers, 2003-01-3181.
  4. S. M. Aceves, D. Flowers, J. M. Frias, F. E. Loza, W. J. Pitz and R. Dibble, “Fuel and additive characterization for HCCI combustion,” Society of Automotive Engineers, 2003-01-.4181.
  5. D. Kawano, H. Naito, H. Suzuki, H. Ishii, S. Hori and Y. Goto, “Effects of fuel properties on combustion and exhaust emissions of Homogeneous Charge Compression Ignition (HCCI) Engine,” Society of Automotive Engineers, 2004-01-6691
  6. J. B. Masurier, F. Foucher, G. Dayma and P. Dagaut, “Effect of additives on combustion characteristics of a natural gas fueled HCCI engine,” SAE Technical 2014-01-2662.
  7. X. C. W. Chen and Z. Huang, “Study on the ignition, combustion, and emissions of HCCI engines fueled with primary reference fuels,” Society of Automotive Engineers, 2005-01-0155.
  8. L. U. XC, W. Chen and Z. Huang, “Study on the ignition, combustion, and emissions of HCCI engines fueled with primary reference fuels,” Society of Automotive Engineers, 2005-01-0155.
  9. J. X. Hou and X. Q.  Qiao, “Characterization of knocking combustion in HCCI DME engine using wavelet packet transform,” Appl. Energy, 87, 2010, pp. 1239-1246.
  10. S. Yamaoka and et al., “HCCI operation control in a multi-cylinder gasoline engine,” SAE Technical Paper 2005-01-0120, 2005
  11. J. Hyvonen, “Operating Conditions using Spark Assisted HCCI Combustion during Combustion Mode Transfer to SI in a Multi-Cylinder VCR- HCCI Engine,” SAE paper, 2005-01-0109.
  12. K., Yoshida, Koseki T and H. Shoji, “Diversified combustion analysis of homogeneous change compression ignition engine with Dimethyl Ether,” JSAE Transactions, 36, No. 4, 2007, pp. 39-44.
  13. J. Willand, R. Nieberding, G. Vent, and C. Enderle, “The knocking syndrome -its cure and its potential,” SAE paper 982483, 1998.
  14. T. Omura, and N. Iida, “A study on combustion control by using internal and external EGR for HCCI engines fuelled with DME,” SAE paper, 2006-32-0045. 
  15. M. Kaneko, K. Morikawa, J. Itoh, and Y. Saishu, “Study on homogeneous charge compression ignition gasoline engines”  JSME International Journal Series B Fluids and Thermal Engineering, 46, 2003, pp. 31-36.
  16. J. A. Eng, W. A. Leppard, and T. M.  Sloane, “The Effects of POx on the Autoignition Chemistry of n-Heptane and Isooctane in an HCCI Engine,” SAE paper, 2002-01-2861.
  17. T. Urushihara, K. Hiraya, A. Kakuhou, and T. Itoh, “Expansion of HCCI operating region by the combination of direct fuel injection, negative valve overlap and internal fuel reformation,” SAE paper, 2003-01-0749.
  18. Y. Urata, M. Awasaka, J. Takanashi, T. Kakinuma, T. Hakozaki and A. Umemoto, “A study of gasoline-fuelled HCCI engine equipped with an electromagnetic valve train,” SAE paper, 2004-01-1898.
  19. H. Persson, M. Agrell, J. O. Olsson, B. Johansson and H. Ström, “The effect of intake temperature on HCCI operation using negative valve overlap,” SAE Paper, 2004-01-0944.
  20. H. Shoji, Y. Tosaka, K. Yoshida and A. Saima, “Radical behavior in preflame reactions under knocking operation in a spark ignition engine,” SAE paper 942061, 1994.
  21. J. Kusaka and et al, “Predicting homogeneous charge compression ignition characteristics of various hydrocarbons,” Proceedings of the 15th Internal Combustion Engine Symposium, Korea, 1999.
  22. https://www.afdc.energy.gov/fuels/emerging_dme.html, Accessed Jan 3, 2017.
  23. M. Konno and, Z. Chen, “Ignition mechanisms of HCCI combustion process fueled with Methane/DME composite fuel,” SAE Paper, 2005-01-0182.
  24. R. Song and et al, “Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition engine,” Frontiers of Energy and Power Engineering in China, 1, No. 4, 2007, pp. 463-467.
  25. W. Ying and et al, “Study of HCCI-DI combustion and emissions in a DME engine,” Fuel, 88, No. 11, 2009, pp. 2255-2261.
  26. G. Shibata, and H. Ogawa, “HCCI combustion control by DME-ethanol binary fuel and EGR,” SAE Technical Paper 2012-01-1577, 2012.
  27. S. Sato, S. P. Kweon, D. Yamashita and N. Iida, “Influence of the mixing ratio of double componential fuels on HCCI combustion,” Int. J. Automot. Technol., 7, No. 3, 2006, pp. 251-952.
  28. C. Huang, M. Yao, X. Lu and Z. Huang, “Study of dimethyl ether homogeneous charge compression ignition combustion process using a multi-dimensional computational fluid dynamics model,” International Journal of Thermal Sciences, 48, 2009, pp. 1814-1822.
  29. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg and  et al, 2000, http://www.me.berkeley.edu/gri_mech/, Accessed Jan 3, 2017.
  30. S. B. Fiveland and N. A. Dennis, “Development and validation of a quasi-dimensional model for HCCI engine performance and emissions studies under turbocharged conditions,” SAE Technical Paper Series, 2002-01-1757.
  31. K. K. Kou, Principles of combustion, 1st ed., John Wiley & Sons Inc., 1986.