بهینه سازی آماری با استفاده از طراحی مرکب مرکزی برای فرایند هیدروژن زدایی اکسایشی سوخت LPG بر روی Fe/HZSM-5 در حضور میدان الکتریکی خارجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه تربیت مدرس دانشکده شیمی

چکیده

تغییر سطح فرمی در سطح کاتالیست بر فعالیت کاتالیستی اثر می‌گذارد. یک روش برای تغییر این سطح، استفاده از میدان الکتریکی خارجی در فرایند کاتالیستی هتروژن است. در این پژوهش HZSM-5 بارگذاری شده با اکسید فلز آهن در یک میدان الکتریکی خارجی با قدرت مناسب برای تجزیه و تحلیل فعالیت کاتالیزوری قرار داده شد. این پژوهش اولین گزارش ارائه شده برای اثر تشدید زئولیت و میدان الکتریکی خارجی برای تولید اولفین است که فعالیت بالاتری نسبت به روش‌های معمول دارد. در میدان الکتریکی ولتاژ بالا، نوار انرژی منحرف می‌شود و انحراف نوار انرژی موجب افزایش فعالیت می‌شود. طراحی آزمایش CCD با استفاده از نرم افزار Design-Expert 7.3 انجام شد تا ارتباط بین چهار متغیر فرایندی، یعنی: دما، شدت جریان الکتریکی، فاصله دو الکترود و مقدار بارگذاری فلز حاصل شود. مدل مربع برای متغیرهای پاسخ معنی‌دار بود. نتایج به دست آمده حاکی از آن است که حداکثر مقدار بازده (42/50%) را می‌توان در دمای 5/662 درجه سانتی‌گراد، شدت جریان الکتریکی ورودی 36/7 میلی آمپر، فاصله دو الکترود 8 میلی متر و بارگذاری فلز 67/3 درصد وزنی به دست آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Statistical optimization using central composite design for the oxidative dehydrogenation process of LPG fuel on Fe / HZSM-5 in the presence of external electric field

نویسندگان [English]

  • Amin Alamdari 1
  • Ramin Karimzadeh 2
1 Tarbiat Modares University
2 Chemical Engineering Faculty, Tarbiat Modares University
چکیده [English]

The change in the Fermi level at the catalyst surface affects the catalytic activity. One way to change this level is to use an external electric field in the heterogeneous catalytic process. In this research, HZSM-5 was loaded with iron oxide and inserted in an external electric field with the proper strength for analyzing catalytic activity. This research is the first report presented for the synergistic effect of zeolite and external electric field to produce olefin, which has a higher activity than conventional methods. In a high voltage electric field, the energy band deviates, and the deviation of energy band increased the activity. The experimental design of the CCD was done using Design-Expert 7.3 software so that the relationship between the four process variables, namely: temperature, electrical current, the distance between the two electrodes, and the amount of metal load, are obtained. The square model was significant for response variables. The results indicate that the maximum yield (50.42%) can be resulted at 662.5 ° C, the intensity of the electric current input 3.67 mA, the distance between the two electrodes of 8 mm and the loading of the metal 6.7 3 wt.%.

کلیدواژه‌ها [English]

  • Oxidative dehydration
  • LPG fuel
  • Iron oxide
  • electric field
  • HZSM-5
Y. Xiang, J. Zhou, B. Lin, X. Xue, X. Tian and Z. Luo, “Exergetic evaluation of renewable light olefins production from biomass via synthetic methanol,” Applied Energy, 157, 2015, pp. 499-507.
2. S. M. Sadrameli, “Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review,” Fuel, 173, 2016, pp. 285-297.
نشریه علمی- پژوهشی سوخت و احتراق، سال دهم، شماره دوم، پاییز 6931
666
3. A. Usman, M. Abdul Bari Siddiqui, A. Hussain, A. Aitani and S. Al-Khattaf, “Catalytic cracking of crude oil to light olefins andnaphtha: Experimental and kinetic modeling,” Chemical engineering research and design, 120, 2017, pp. 121-137.
4. E. V. Ishchenko, R. V. Gulyaev, T. Yu. Kardash, A. V. Ishchenko, E. Yu. Gerasimov, V. I. Sobolev and V. M. Bondareva, “Effect of Bi on catalytic performance and stability of MoVTeNbO catalysts in oxidative dehydrogenation of ethane,” Applied Catalysis A: General, 534, 2017, pp. 58-69.
5. R. Sanchis, D. Delgado, S. Agouram, M. D. Soriano, M. I. Vázquez, E. Rodríguez-Castellón, B. Solsona, J. M. López Nieto, “NiO diluted in high surface area TiO2as an efficient catalyst for theoxidative dehydrogenation of ethane,” Applied Catalysis A: General, 536, 2017, pp. 18-26. 6. T. H. Wolkenstein, “The Electron Theory of Catalysis on Semiconductors,” Advances in Catalysis, 12, 1960, pp. 189-264.
7. J. L. Andrés, A. Lledós, M. Duran and J. Bertrán, “Electric field acting as catalysts in chemical reactions. An ab initio study of the walden inversion reaction,” Chem. Phys. Lett., 153, 1988, pp. 82-85.
8. J. Derefi, R. Mania, “Effect of an External Electric Field on the Oxidation of CO to CO2 on a Nickel Oxide Catalyst,” Journal of Catalysis, 35,1974, pp. 369–375.
9. Y. Sekine, M. Tomioka, M. Matsukata, E. Kikuchi, “Catalytic degradation of ethanol in an electric field,” Catalysis Today, 146, 2009, pp. 183-18.
10. Y. Sekine, M. Haraguchi, M. Matsukata and E. Kikuchi, “Low temperature steam reforming of methane over metal catalyst supported on CexZr1−xO2 in an electric field,” Catalysis Today, 171, 2011, pp. 116-125.
11. K. Oshima, K. Tanaka, T. Yabe, E. Kikuchi and Y. Sekine, “Oxidative coupling of methane using carbon dioxide in an electric field over La-ZrO2 catalyst at low external temperature,” Fuel, 107, 2013, pp. 879-881.
12. K. Oshima, T. Shinagawa, Y. Nogami, R. Manabe, Sh. Ogo and Y. Sekine, “Low temperature catalytic reverse water gas shift reaction assisted byan electric field,” Catalysis Today, 232, 2013, pp. 27- 32.
13. K. Oshima, T. Shinagawa, M. Haraguchi and Y. Sekine, “Low temperature hydrogen production by catalytic steam reforming of methane in an electric field,” International Journal of hydrogen energy, 38, 2013, pp. 3003-3011.
14. T. Yabe, K. Mitarai, K. Oshima, S. Ogo and Y. Sekine, “Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts,” Fuel Processing Technology, 158, 2017, pp. 96-103.
15. X. S. Yi, W.X. Shi, S. L. Yu, X. H. Li, N. Sun and C. He, “Factorial design applied to flux decline of anionic polyacrylamide removal from water by modified polyvinylidene fluoride ultrafiltration membranes,” Desalination, 274, 2011, pp. 7-12.
16. S. Abbasizadeh, A. R. Keshtkar and M. A. Mousavian, “Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution,” Chem. Engi. J., 220, 2013, pp. 161-171. 17. R. Lopez and R, Gomez, “Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study,” Sol-Gel Sci. Tech., 61, 2012, pp. 1-7.
18. 18. L. V. Azároff and J. J. Brophy, Electronic processes in materials, McGraw-Hill, New York, Technology & Engineering, 1963.
19. A. Banik and K. Biswas, “AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization,” Sol. Sta. Chem., 242, 2016, pp. 43-49.
20. M. A. El-Hadi, S. Saqan, A. Zihlif and G. Ragosa, “Electrical impedance properties of zeolite composites,” Mater Technol Adv Perform Mater Mat. Tech. 23, 2008, pp. 152-157.
21. Ali Zeinali Varzaneh, J. Towfighi, A. H. Shahbazi Kootenaei and A. Mohamadalizadeh, “Effect of cerium and zirconium nanoparticles on the structure and catalytic performance of SAPO-34 in steam cracking of naphtha to light olefins,” Reaction Kinetics, Mechanisms and Catalysis, 115, 2015, pp. 719-740.
22. P. Onsekizoglua, K. S. Bahcecib and J. Acara, “The use of factorial design for modeling membrane distillation,” J. Membr. Sci., 349, 2010 pp. 225-230.
23. N. T. Abdel-Ghani, A. K. Hegazy, G. A. El-Chaghaby and E. C. Lima, “Factorial experimental design for biosorption of iron and zinc using Typha domingensis phytomass,” Desalination, 249, 2009, pp. 343-347.
24. T. E. Köse, “Agricultural residue anion exchanger for removal of dye stuff from wastewater using full factorial design,” Desalination, 222, 2008, pp. 323-330.
25. D. C. Montgomery, Design and Analysis of Experiments, Fourth Edition, John Wiley and Sons, New York, 1997.
26. N. K. Nandakumar and E. G. Seebauer, “Relating catalytic activity of d0 semiconducting metal oxides to the fermi level position,” J. Phys. Chem. C. 1182, 2014, pp. 6873-6881.
27. E. N. Voskresenskaya, V. G. Roguleva and A. G. Anshits, “Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling,” Catal. Rev. Sci. Eng., 7, 1995, pp. 101-143.
28. R. K. Grasselli, “Fundamental principles of selective heterogeneous oxidation catalysis,” Top. Cata., 21, 2000, pp. 79-88.
29. B.Y. Jibril, “Catalytic performances and correlations with metal oxide band gaps of metal-tungsten mixed oxide catalysts in propane oxydehydrogenation,” React. Kinet. Catal. Lett, 86, 2005, pp. 171-177.