بررسی تجربی تاثیر زمان پاشش سوخت ستان بالا بر عملکرد یک موتور احتراق دماپایین پاشش مستقیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی،دانشگاه بیرجند،

2 گروه مکانیک- دانشکده مهندسی- دانشگاه بیرجند- بیرجند- ایران

3 دانشکده مهندسی، محیط زیست و کامپیوتر، دانشگاه کاونتری، کاونتری، انگلستان

4 دانشیار، مهندسی مکانیک، دانشگاه سالنتو، لچه، ایتالیا،

10.22034/jfnc.2022.364427.1333

چکیده

در دهه­های اخیر، موتورهای احتراق دماپایین به‌عنوان راهبردی موثر برای رسیدن به مدل احتراقی بهینه مورد توجه محققین قرار گرفته­ اند. در این نوع مدل احتراقی، ابتدا سوخت با عدد اکتان بالا در راهگاه ورودی پاشیده ­­شده و سپس در محفظه­ ی احتراق یک سوخت دیگر با عدد ستان بالا، در زمان­های مختلف تزریق می­شود. احتراق در موتورهای اشتعال تراکمی واکنش‌کنترلی، از هیچ ابزار کنترلی مستقیمی استفاده ‌نمی‌کند و به شرایط اولیه و سینتیک شیمیایی واکنش‌ها وابسته است. با توجه به اهمیت زمان­ بندی احتراق و کنترل آن در عملکرد موتور احتراقی دما­پایین، در این مطالعه با استفاده از متغیرهای کنترلی تأخیر در اشتعال، زمان پاشش سوخت و فشار بیشینه داخل سیلندر در کنار سیستم پاشش سوخت به‌عنوان عملگر کنترل احتراق، به بررسی تجربی عملکرد یک موتور احتراقی دماپایین پاشش مستقیم پرداخته شده ­است. نتایج نشان می ­دهد که زمان پاشش سوخت دیزل در داخل سیلندر، از مهم­ترین فاکتورهای تأثیرگذار در عملکرد و کارایی موتور است. برای نرخ پاشش متان slm15، با افزایش تأخیر در زمان پاشش سوخت پایلوت (دیزل)، مقدار حداکثر نرخ آزادسازی حرارت و مصرف‌ ویژه سوخت کاهش یافته در حالی­ که فشار موثر متوسط اندیکاتوری و بازده اندیکاتوری ناخالص افزایش‌ می‌‌یابد. همچنین با کنترل واکنش‌پذیری مخلوط و زمان پاشش سوخت با واکنش‌پذیری بالا، می‌توان به زمان احتراق مناسب دست‌ یافت که نشان­ دهنده اهمیت زمان پاشش سوخت به‌عنوان یک پارامتر کنترلی مهم در کنترل احتراق یک موتور دما­پایین است. بطور کلی، نرخ پاشش متان تأثیر ثانویه‌ای در مقایسه با زمان شروع پاشش بر تأخیر در اشتعال دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental investigation of the effects of the high cetane number fuel injection on the performance of a direct injection low-temperature combustion engine

نویسندگان [English]

  • Seyyed Iman Pourmousavi Kani 1
  • Javad Khadem 2
  • Kamyar Nikzadfar 3
  • Antonio Paolo Carlucci 4
1 engineering faculty, birjand university
2 Mechanical Eng, University of Birjand, Birjand, Iran
3 Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK.
4 Department of Mechanical Engineering, Salento University, Lecce, Italy
چکیده [English]

In recent decades, low temperature combustion engines have been the focus of researchers as an effective strategy to achieve the optimal combustion model. In this method of combustion, initially, the fuel with high octane is sprayed in the inlet manifold and then another fuel with a high cetane number is injected into the combustion chamber at a different time. Combustion in reaction-controlled compression ignition engines does not use direct control tools and depends on the reactions' initial conditions and chemical kinetics. Considering the importance of ignition timing and its control in low-temperature combustion engine performance, in this study, using the control variables of ignition delay, fuel injection time and maximum pressure inside the cylinder, along with the fuel injection system as the ignition control operator, to the experimental investigation of the performance of a direct injection low temperature combustion engine has been discussed. The results show that the injection time of diesel fuel inside the cylinder is one of the most important factors influencing the performance and efficiency of the engine. For low methane injection rate (15 slm), with increasing delay in pilot fuel (diesel) injection time, the value of the maximum heat release rate and specific fuel consumption decreased, while the mean effective pressure and gross indicator efficiency increased. By controlling the reactivity of the mixture and the fuel injection time with more reactivity, it is possible to achieve the appropriate ignition time, which indicates the importance of the fuel injection time as an essential control parameter in the ignition control of a low-temperature engine. In general, the methane rate has a secondary effect on ID compared to SOI.

کلیدواژه‌ها [English]

  • Reactivity Controlled Compression Ignition
  • Combustion Control Parameters
  • Start of Injection
  • AVL 5402 Engine
  1. Hanson and M. Reed, Experimental Investigation of Transient RCCI Combustion in a Light Duty Diesel Engine, PhD dissertation, University of Wisconsin, 2014.
  2. Najt and D. Foster, "Compression-Ignited Homogeneous Charge Combustion," SAE Paper, 830264, 1983.
  3. Boot, C. Luijten, E. Rijk, B. Albrecht and R. Baert, "Optimization of Operating Conditions in the Early Direct Injection Premixed Charge Compression Ignition Regime," SAE Paper, 2009-24-0048, 2009.
  4. Reitz and G. Duraisamy, "Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines," Progress in Energy and Combustion Science, vol. 46, p. 12–71, 2015.
  5. Fathi, O. Jahanian and M. Shahbakhti, “Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – a comprehensive review”, Energy Conversion and Management, 139:1–19, 2017.
  6. Bengtsson, P. Strandh, R. Johansson, P. Tunesta°l and B. Johansson, “Closed-loop combustion control of homogeneous charge compression ignition (HCCI) engine dynamics,” Int J Adapt Control Signal Process, 18(2):167–179, 2004.
  7. M. Shaver, J. C. Gerdes and M. Roelle, “Physics-based closed-loop control of phasing, peak pressure and work output in HCCI engines utilizing variable valve actuation,” American control conference, vol 1. IEEE, Massachusetts, USA, pp 150–155, 2004.
  8. M. Shaver, J. C. Gerdes and M. Roelle, “Physics-based modeling and control of residualaffected HCCI engines,” Journal of Dynamic System Measurement and Control, 131(2):021002, 2009.
  9. K. Maurya, A. K. Agarwal, “Investigations on the effect of measurement errors on estimated combustion and performance parameters in HCCI combustion engine,” Measurement, 46(1):80–88, 2013.
  10. K. Maurya, D. D. Pal and A. K. Agarwal, “Digital signal processing of cylinder pressure data for combustion diagnostics of HCCI engine,” Mechanical Systems and Signal Processing, 36(1):95–109, 2013.
  11. Strandh, J. Bengtsson, R. Johansson, P. Tunestal and B. Johansson, “Variable valve actuation for timing control of a homogeneous charge compression ignition engine,” SAE technical paper, 2005.
  12. Ingesson, L. Yin, R. Johansson and P. Tunestal, “Simultaneous control of combustion timing and ignition delay in multi-cylinder partially premixed combustion,” SAE International Journal of Engines, 8(2015-24-2424):2089–2098, 2015.
  13. K. Arora and M. Shahbakhti, “Real-time closed-loop control of a light-duty RCCI engine during transient operations,” SAE technical paper, 2017.
  14. Bidarvatan, V. Thakkar, M. Shahbakhti, B. Bahri and A. A. Aziz, “Grey-box modeling of HCCI engines,” Applied Thermal Engineering, 70(1):397–409, 2014.
  15. O. Olsson, P. Tunesta°l and B. Johansson, “Closed-loop control of an HCCI engine,” SAE technical paper, 2001.
  16. Bidarvatan and M. Shahbakhti, “Two-input two-output control of blended fuel HCCI engines,” SAE technical paper, 2013.
  17. Ravi, H. H. Liao, A. F. Jungkunz, A. Widd and J. C. Gerdes, “Model predictive control of HCCI using variable valve actuation and fuel injection,” Control Engineering Practice, 20(4):421–430, 2012.
  18. Tandra and N. Srivastava, “Optimal peak pressure and exhaust temperature tracking control for a two-zone HCCI engine model with mean burn duration,” SAE technical paper, 2009.
  19. Asad, P. Divekar, X. Chen, M. Zheng and J. Tjong, “Mode switching control for diesel low temperature combustion with fast feedback algorithms,” SAE International Journal of Engines, 5(2012-01-0900):850–863, 2012.
  20. Ingesson, L. Yin, R. Johansson and P. Tunestal, “Control of the low-load region in partially premixed combustion,” Journal of physics, conference series, vol 744, no. 1. IOP Publishing, p 012106, 2016.
  21. Yin, G. Ingesson, R. Johansson and P. Tunestal, “Partially Premixed Combustion Multi-Cylinder Engine Cycle-to-Cycle-Oriented Temperature Estimation and Control,” International Journal of Powertrains, 6(1), 5-22, 2017.
  22. Bengtsson, P. Strandh, R. Johansson, P. Tunesta°l and B. Johansson, “Hybrid control of homogeneous charge compression ignition (HCCI) engine dynamics,” International Journal of Control, 79 (05):422–448, 2006.
  23. Kokjohn, S. L., Hanson, R.M., Splitter, D., Kaddatz, J., and Reitz, R. D., "Fuel ReactivityControlled Compression Ignition (RCCI) Combustion in Light- and Heavy-duty Engines," SAE International Journal of Engines, 2011-01-0357, 2011.
  24. Kokjohn, S. L., Musculus, M. P. B., and Reitz, R. D., "Evaluating Temperature and FuelStratification for Heat Release Rate Control in a Reactivity-Controlled Compression-IgnitionEngine using Optical Diagnostics and Chemical Kinetics Modeling," Combustion and Flame,Vol.162 (6): 2729-2742, 2015.
  25. Gharehghani, R. Hosseini, M. Mirsalim, S.A. Jazayeri and T. Yusaf, "An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas," Energy, 558-567, 2015.
  26. Amin Yousefi, Hongsheng Guob and Madjid Birouk,” An experimental and numerical study on diesel injection split of a natural gas/diesel dual-fuel engine at a low engine load,” Fuel, 212 (2018) 332–346,2018.
  27. Amin Yousefi, Madjid Birouk and Hongsheng Guo,”Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions,” Fuel, 235 (2019) 838–846.
  28. Ott, F. Zurbriggen, C. Onder and L. Guzzella, “Cylinder Individual Feedback Control of Combustion in a Dual Fuel Engine,” 7th IFAC Symposium on Advances in Automotive Control, 2013.
  29. Yang, J. Wang, G. Gao and M. Ouyang, “In-cycle diesel low temperature combustion control based on SOC detection,” Applied Energy, 136 (2014) 77–88, 2014.
  30. Zhang, F. Zhao, L. Li, Z. Wu, et al., "Closed-loop Control of Low Temperature Combustion Employing Ion Current Detecting Technology," SAE Technical Paper, 2014-01-1362, 2014.
  31. Wu, R. Hanson and R. Reitz, “Investigation of combustion phasing control strategy during reactivity controlled compression ignition (RCCI) multicylinder engine load transitions,” Journal of Engineering for Gas Turbines and Power, 2014.
  32. Bekdemir, R. Baert, F. Willems and B. Somers, "Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion," SAE Technical Paper, 2015-01-1745, 2015.
  33. Khodadadi Sadabadi, M. Shahbakhti, A. N. Bharath and R. Reitz, “Modeling of combustion phasing of a reactivity-controlled compression ignition engine for control applications,” International Journal of Engine Research, 2015.
  34. Indrajuana, C. Bekdemir, X. Luo and F. Willems, “Robust Multivariable Feedback Control of Natural Gas-Diesel RCCI Combustion,” IFAC-PapersOnLine, 49-11 (2016) 217–222, 2016.
  35. Naga Nithin Teja Kondipati, Experimental Study, Modelling and Controller Design for an RCCI Engine, Master of Science Thesis, 2016.
  36. Kassa, C. Hall, A. Ickes and T. Wallner, "Feedforward Control of Fuel Distribution on Advanced Dual-Fuel Engines with Varying Intake Valve Closing Timings," SAE Technical Paper, 2016-01-2312, 2016.
  37. Naga Nithin Teja Kondipatiy, J. Arora, M. Bidarvatan and M. Shahbakhti, “Modeling, Design and Implementation of a Closed-Loop Combustion Controller for an RCCI Engine,” American Control Conference, 2017.
  38. Akshat Abhay Raut, Model-Based Conntrol of an RCCI Engine, Master of Science Thesis, 2017.
  39. Arora and M. Shahbakhti, "Real-Time Closed-Loop Control of a Light-Duty RCCI Engine during Transient Operations," SAE Technical Paper, 2017-01-0767, 2017.
  40. Ravaglioli, F.Ponti, M. De Cesare and F. Stola, "Combustion Indexes for Innovative Combustion Control", SAE International Journal of Engines, 2017.
  41. Dong, B. Liu, F. Zhang, Y. Wang, B. Wang and P. Liu, “Control oriented modeling and analysis of gas exchange and combustion processes for LTC diesel engine,” Applied Thermal Engineering, 110 (2017) 1305–1314, 2017.
  42. Fang, M. Ouyang, P. Tunestal, F. Yang and X. Yang, “Closed-loop combustion phase control for multiple combustion modes by multiple injections in a compression ignition engine fueled by gasoline diesel mixture,” Applied Energy, 231 (2018) 816–825, 2018.
  43. Guardiola, B. Pla, P. Bares and A. Barbier, “A combustion phasing control-oriented model applied to an RCCI engine,” IFAC PapersOnLine, 51-31, 2018.
  44. Frank Willems, “Is Cylinder Pressure-Based Control Required to Meet Future HD Legislation,” IFAC PapersOnLine, 51-31 (2018) 111–118, 2018.
  45. Raut, M. Bidarvatan, H. Borhan and M. Shahbakhti, “Model Predictive Control of an RCCI Engine,” Annual American Control Conference (ACC), 2018.
  46. Indrajuana, C. Bekdemir, E. Feru and F. Willems, “Towards Model-Based Control of RCCI-CDF Mode-Switching in Dual Fuel Engines,” SAE Technical Paper, 2018-01-0263, 2018.
  47. Pielecha, K. Wisłocki, W. Cieslik, W. Bueschke, M. Skowron and Ł. Fiedkiewicz, “Application of IMEP and MFB50 indexes for controlling combustion in dual-fuel reciprocating engine,” Applied Thermal Engineering, 132 (2018) 188–195, 2018.
  48. Raut, B.K. Irdmousa and M. Shahbakhti, “Dynamic modeling and model predictive control of an RCCI engine,” Control Engineering Practice, 81 (2018) 129–144, 2018.
  49. Carlucci, D. Laforgia, and R. Saracino, “Effects of in-cylinder bulk flow and methane supply strategies on charge stratification, combustion and emissions of a dual-fuel DI diesel engine,” SAE technical paper, 2009-01-0949,2009.
  50. Carlucci, D. Laforgia, and R. Saracino and G. Toto, “ Study of combustion development in methane-diesel dual fuel engines, based on the analysis of in-cylinder luminance,” SAE technical paper, 2010-01-1297,2010.
  51. Atie Taqizadeh, 3D Simulation Study on the Effect of Equivalence Ratio on Combustion Performance of a DI-LTC Engine, MSC dissertation, Babol Noshirvani University of Technology, 2018. (In Persian)
  52. Saxena, Maximizing power output in HCCI engines and enabling effective control of combustion timing, PhD dissertation, University of California, Berkeley, 2011.
  53. Atie Taqizadeh, Omid Jahanian and S. Iman Pourmousavi K., “Simulation Study on the Effects of Methane-Normal Heptane Blend Fraction on the Performance of a Reactivity Controlled Compression Ignition (RCCI) Engine,” Fuel and Combustion Scientific Research Journal, 2019.
  54. Eng, J. A., "Characterization of pressure waves in HCCI combustion," SAE Technical Paper, 2002-01-2859, 2002.
  55. Woschni G., “A universally applicable equation for the instantaneous heat transfer coefficientin the internal combustion engine,” SAE technical paper, 1967.
  56. Mahdi Shahbakhti, Modeling and Experimental Study of an HCCI Engine for Combustion Timing Control, PhD dissertation, University of Alberta, 2009.