مدل‌سازی و بهینه سازی عملکرد و آلایندگی یک موتور دیزلی سوخت رسانی شده با امولسیون های آب- دیزل حاوی افزودنی نانوذرات فلزی-آلی به کمک یادگیری ماشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک ماشین‌های کشاورزی، دانشکده فنی و مهندسی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

3 گروه بیوتکنولوژی میکروبی ، پژوهشکده بیوتکنولوژی کشاورزی ایران ، سازمان تحقیقات کشاورزی، ترویج و آموزش، کرج، ایران

4 آزمایشگاه تحقیقاتی فرآیندهای پیشرفته تصفیه آب و فاضلاب ، گروه شیمی کاربردی ، دانشکده شیمی ، دانشگاه تبریز ، تبریز ، ایران

5 پژوهشکده علوم شناختی، پژوهشگاه دانش‌های بنیادی، تهران، ایران

چکیده

تحقیق حاضر، به‌منظور مدل سازی و بهینه سازی عملکرد و ویژگی های انتشار آلایندگی یک موتور دیزل سوخت رسانی شده با امولسیون آب-دیزل حاوی نانوذرات چارچوب فلزی-آلی با استفاده از ترکیب سامانه استنتاج عصبی-فازی تطبیقی با الگوریتم بهینه سازی ازدحام ذرات (PSO-ANFIS) انجام شده است. به منظور بهینه سازی پارامترهای عملکرد موتور و ترکیب سوخت از الگوریتم ازدحام ذرات چند منظوره (MOPSO) استفاده شده است. مقدار آب اضافه شده به امولسیون، بار موتور و غلظت افزودنی نانوذرات چارچوب فلزی-آلی به عنوان پارامترهای ورودی مدل در نظر گرفته شدند. مصرف سوخت ویژه ترمزی، بازده حرارتی ترمزی، CO، CO2، UHC، NOx و دوده به عنوان خروجی مدل در نظر گرفته شده اند. از 16 داده تجربی در فرآیند مدل‌سازی و بهینه سازی استفاده شده است. نتایج نشان داد مدل های توسعه یافته PSO-ANFIS با دقت کافی توابع هدف را پیش بینی می‌کند. بین تمامی داده‌های هدف و خروجی مدل های توسعه یافته تطابق خوبی وجود داشت. با توجه به نتایج بهینه‌سازی مشاهده شد که سوخت امولسیون آب-دیزل حاوی 27/26 ppm نانوذره چارچوب فلزی-آلی و 14/4 درصد وزنی آب تحت بار موتور 15/60 درصد از بار کامل دارای شرایط بهینه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and optimization of performance and emissions of a diesel engine fueled with water-diesel emulsions containing metal-organic nanoparticles by machine learning

نویسندگان [English]

  • ُSeyyed Hassan Hosseini 1
  • Mortaza Aghbashlo 2
  • Meisam Tabatabaei 3
  • Ali Hajiahmad 2
  • Alireza Khataee 4
  • Mohammad Hossein Nadian 5
1 Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Extension, And Education Organization (AREEO), Karaj, Iran
4 Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
5 Brain Engineering Research Center, Institute for Research in Fundamental Sciences
چکیده [English]

The present study aimed to model and optimize the performance and emission characteristics of a diesel engine fueled with water-diesel emulsions containing metal-organic framework nanoparticles using a combination of adaptive neural-fuzzy inference system with optimal algorithm particle swarm generation (PSO-ANFIS). The multi-purpose particle swarm algorithm (MOPSO) was used to optimize engine performance and fuel composition. Water inclusion rate, engine load, and metal-organic framework nanoparticle concentration were considered as input parameters of the model. Brake specific fuel consumption, brake thermal efficiency, CO, CO2, UHC, NOx, and smoke were considered as model outputs. Sixteen experimental data were used in modeling and optimization processes. The results showed that the developed PSO-ANFIS models could accurately predict the objective functions. There was a good agreement between all the target data and the output of the developed models. According to the optimization results, water-diesel emulsion fuel containing 26.27 ppm metal-organic framework nanoparticles and 4.14 wt% water under engine load 60.15% of the full-load operating level was found to be optimal conditions.
.

کلیدواژه‌ها [English]

  • Water/diesel emulsion
  • Metal-organic framework nanoparticles
  • Adaptive neuro-fuzzy inference system
  • Particle swarm optimization algorithm
  1. S. Basha and R. B. Anand, “Performance, emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions,” Alexandria Eng. J., vol. 53, no. 2, pp. 259–273, 2014, doi: 10.1016/j.aej.2014.04.001.
  2. F. Chen, M.A. Adzmi, A. Adam, M.F. Othman, M.K. Kamaruzzaman,and A.G. Mrwan, “Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide,” Energy Convers. Manag., vol. 171, pp. 461–477, 2018, doi: 10.1016/j.enconman.2018.06.004.
  3. Aghbashlo, M. Tabatabaei, E. Khalife, T. Roodbar Shojaei, and A. Dadak, “Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide,” Energy, vol. 149, pp. 967–978, 2018.
  4. He and Y. Yu, “Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test,” Catal. Today, vol. 100, no. 1–2, pp. 37–47, 2005.
  5. Zhu, Y. Ma, and D. Zhang, “Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine,” Appl. Energy, vol. 91, no. 1, pp. 166–172, 2012, doi: 10.1016/j.apenergy.2011.09.007.
  6. Mohan et al., “Emulsion fuel with novel nano-organic additives for diesel engine application,” Fuel, vol. 104, no. September 2016, pp. 726–731, 2013, doi: 10.1016/j.fuel.2012.04.051.
  7. Saravanan, G. Nagarajan, and S. Sampath, “Multi response optimization of NOx emission of a stationary diesel engine,” Fuel, vol. 89, no. 11, pp. 3235–3240, 2010.
  8. A. Subramanian, “A comparison of water–diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions,” Energy Convers. Manag., vol. 52, no. 2, pp. 849–857, 2011, doi: 10.1016/j.enconman.2010.08.010.
  9. Taylor, J. S. Basha, and R. B. Anand, “An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel,” Int. J. green energy, vol. 8, no. 3, pp. 332–348, 2011, doi: 10.1080/15435075.2011.557844.
  10. Jhalani, D. Sharma, S. L. Soni, and P. K. Sharma, “Effects of process parameters on performance and emissions of a water-emulsified diesel-fueled compression ignition engine,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–13, 2019, doi: 10.1080/15567036.2019.1669739.
  11. Vigneswaran, K. Annamalai, B. Dhinesh, and R. Krishnamoorthy, “Experimental investigation of unmodified diesel engine performance, combustion and emission with multipurpose additive along with water-in-diesel emulsion fuel,” Energy Convers. Manag., vol. 172, no. April, pp. 370–380, 2018, doi: 10.1016/j.enconman.2018.07.039.
  12. Sartomo, B. Santoso, and O. Muraza, “Recent progress on mixing technology for water-emulsion fuel: A review,” Energy Convers. Manag., vol. 213, no. February, p. 112817, 2020, doi: 10.1016/j.enconman.2020.112817.
  13. Hosseinzadeh-Bandbafha, E. Khalife, M. Tabatabaei, M. Aghbashlo, M. Khanali, P. Mohammadi, T.R. Shojaei, and S. Soltanian, “Effects of aqueous carbon nanoparticles as a novel nanoadditive in water-emulsified diesel/biodiesel blends on performance and emissions parameters of a diesel engine,” Energy Convers. Manag., vol. 196, pp. 1153–1166, 2019, doi: 10.1016/j.enconman.2019.06.077.
  14. Khalife, M. Tabatabaei, A. Demirbas, and M. Aghbashlo, “Impacts of additives on performance and emission characteristics of diesel engines during steady state operation,” Prog. Energy Combust. Sci., vol. 59, pp. 32–78, 2017.
  15. D. Raju, P. S. Kishore, K. Nanthagopal, and B. Ashok, “An experimental study on the effect of nanoparticles with novel tamarind seed methyl ester for diesel engine applications,” Energy Convers. Manag., vol. 164, no. November 2017, pp. 655–666, 2018, doi: 10.1016/j.enconman.2018.03.032.
  16. B. Shafii, F. Daneshvar, N. al Jahani, and K. Mobini, “Effect of ferrofluid on the performance and emission patterns of a four-stroke diesel engine,” Adv. Mech. Eng., vol. 3, p. 529049, 2011, doi: 10.1155/2011/529049.
  17. Fangsuwannarak and K. Triratanasirichai, “Effect of metalloid compound and bio-solution additives on biodiesel engine performance and exhaust emissions,” Am. J. Appl. Sci., vol. 10, no. 10, p. 1201, 2013, doi: 10.3844/ajassp.2013.1201.1213.
  18. Gumus, H. Ozcan, M. Ozbey, and B. Topaloglu, “Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine,” Fuel, vol. 163, pp. 80–87, 2016.
  19. S. Basha and R. B. Anand, “An experimental investigation in a diesel engine using carbon nanotubes blended water-diesel emulsion fuel,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 225, no. 3, pp. 279–288, 2011.
  20. A. M. Selvan, R. B. Anand, and M. Udayakumar, “Effect of Cerium Oxide Nanoparticles and Carbon Nanotubes as fuel-borne additives in Diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine,” Fuel, vol. 130, pp. 160–167, 2014.
  21. S. Basha and R. B. Anand, “The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine,” J. Brazilian Soc. Mech. Sci. Eng., vol. 35, no. 3, pp. 257–264, 2013.
  22. I. El-seesy and H. Hassan, “Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance,” Renew. energy, vol. 132, pp. 558–574, 2019, doi: 10.1016/j.renene.2018.08.026.
  23. Mirzajanzadeh et al., “A novel soluble nano-catalysts in diesel-biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions,” Fuel, vol. 139, pp. 374–382, 2015, doi: 10.1016/j.fuel.2014.09.008.
  24. Lee and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” Int. J. Heat Mass Transf., vol. 50, no. 3–4, pp. 452–463, 2007.
  25. N. Pantzali, A. G. Kanaris, K. D. Antoniadis, A. A. Mouza, and S. V Paras, “Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface,” Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 691–699, 2009.
  26. Keskin, M. Gürü, and D. Altıparmak, “Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine,” Energy Convers. Manag., vol. 52, no. 1, pp. 60–65, 2011, doi: 10.1016/j.enconman.2010.06.039.
  27. E. M. Soudagar, N.-N. Nik-Ghazali, M. A. Kalam, I. A. Badruddin, N. R. Banapurmath, and N. Akram, “The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics,” Energy Convers. Manag., vol. 178, pp. 146–177, 2018.
  28. Xie and F. Wan, “Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils,” Chem. Eng. J., vol. 365, pp. 40–50, 2019.
  29. Y. Sun, C. Qin, X.L. Wang, G.S. Yang, K.Z. Shao, Y.Q. Lan, Z.M. Su, P. Huang, C.G. Wang, and E.B. Wang, “Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle,” Dalt. Trans., vol. 41, no. 23, pp. 6906–6909, 2012, doi: 10.1039/c2dt30357d.
  30. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, and F. Verpoort,Verpoort et al., “Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67,” J. Mater. Chem. A, vol. 5, no. 3, pp. 952–957, 2017, doi: 10.1039/C6TA07860E.
  31. A. Vahed, M. R. Naimi-Jamal, and L. Panahi, “Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release,” J. Drug Deliv. Sci. Technol., vol. 49, no. September 2018, pp. 570–576, 2019, doi: 10.1016/j.jddst.2018.12.022.
  32. E. Sann, Y. Pan, Z. Gao, S. Zhan, and F. Xia, “Highly hydrophobic ZIF-8 particles and application for oil-water separation,” Sep. Purif. Technol., vol. 206, no. December 2017, pp. 186–191, 2018, doi: 10.1016/j.seppur.2018.04.027.
  33. Li, B. Zou, A. Xiao, and H. Zhang, “Advances of Metal‐Organic Frameworks in Energy and Environmental Applications,” Chinese J. Chem., vol. 35, no. 10, pp. 1501–1511, 2017, doi: 10.1002/cjoc.201700151.
  34. Shi, Z. Chen, Z. Song, J. Li, and J. Dong, “Synthesis of ZIF‐8 and ZIF‐67 by steam‐assisted conversion and an investigation of their tribological behaviors,” Angew. Chemie Int. Ed., vol. 50, no. 3, pp. 672–675, 2011.
  35. Pan, Y. Liu, G. Zeng, L. Zhao, and Z. Lai, “Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system,” Chem. Commun., vol. 47, no. 7, pp. 2071–2073, 2011, doi: 10.1039/c0cc05002d.
  36. H. Hosseini, H.Rastegari, M.Aghbashlo, A. Hajiahmad, H. Hosseinzadeh-Bandbafha, P. Mohammadi, ... and M.Tabatabaei, “Effects of metal-organic framework nanoparticles on the combustion, performance, and emission characteristics of a diesel engine,” Energy., vol. 260, p. 125070, 2022.
  37. Saravanakumar and R. Prakash, “Validation of performance and emissions of a CI engine fueled with calophyllum inophyllum methyl esters using soft computing technique,” Fuel, vol. 266, no. December 2019, p. 117070, 2020, doi: 10.1016/j.fuel.2020.117070.
  38. NK, Singh. Y, Sharma. A, and Abd Rahim. E, “Prediction of performance and emission parameters of Kusum biodiesel based diesel engine using neuro-fuzzy techniques combined with genetic algorithm,” Fuel, vol. 280, no. July, p. 118629, 2020, doi: 10.1016/j.fuel.2020.118629.
  39. Aghbashlo, M. Tabatabaei, M. Hossein, M. H. Nadian, V. Davoodnia, and S. Soltanian, “Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm,” Fuel, vol. 253, no. December 2018, pp. 189–198, 2019, doi: 10.1016/j.fuel.2019.04.169.
  40. Suleymani and A. Bemani, “Application of ANFIS-PSO algorithm as a novel method for estimation of higher heating value of biomass,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 40, no. 3, pp. 288–293, 2018, doi: 10.1080/15567036.2017.1413453.
  41. Atarod et al., “Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel ‎emulsion fuel,” J. Hazard. Mater., vol. 407, p. 124369, 2020, doi: 10.1016/j.jhazmat.2020.124369.
  42. Hosoz. M, Ertunc. H. M, Karabektas. M, and Ergen. G, “ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 24–32, 2013, doi: 10.1016/j.applthermaleng.2013.06.040.
  43. Kumar et al., “Diesel engine performance and emission analysis running on jojoba biodiesel using intelligent hybrid prediction techniques,” Fuel, vol. 279, no. April, p. 118571, 2020, doi: 10.1016/j.fuel.2020.118571.
  44. International, “Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber,” 2008.
  45. Roy. S, Das. K, Bhadouria. V. S, Mallik. S. R, Banerjee. R, and Bose. P. K, "Adaptive-neuro fuzzy inference system (ANFIS) based prediction ofperformance and emission parameters of a CRDI assisted diesel engine under CNG dual-fuel operation." Journal of Natural Gas Science and Engineering. pp. 274-283, 2015.
  46. Kennedy, “Particle swarm optimization,” in Encyclopedia of machine learning, Springer, 2011, pp. 760–766.
  47. Azadbakht, M. V. Torshizi, and A. Ziaratban, “Application of Artificial Neural Network ( ANN ) in predicting mechanical properties of canola stem under shear loading,” Agric. Eng. Int. CIGR J., vol. 18, no. 5, pp. 413–424, 2016.
  48. Y. B. Khoshnevisan, Sh. Rafiee, M. Omid, “Prediction of environmental indices of Iran wheat production using artificial neural networks,” Int. J. Energy Environ., vol. 4, no. 2, pp. 339–348, 2013.
  49. Azadbakht, H. Aghili, A. Ziaratban, and M. Vehedi Torshizi, “Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes,” Energy, vol. 120, pp. 947–958, Feb. 2017, doi: 10.1016/j.energy.2016.12.006.