شبیه‌‌سازی نرخ تبخیر و دمای سوخت تحت اثر شار حرارتی متغیر با زمان در آتش استخری کم عمق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

2 دانشگاه تربیت مدرس، دانشکده مهندسی مکانیک، گروه تبدیل انرژی

3 دانشگاه تربیت مدرس

چکیده

ی
یکی از چالش‌ها و پیچیدگی‌های شبیه‌سازی مسائل مرتبط با آتش استخری با سوخت مایع، تعیین نرخ تبخیر سوخت است. در این پژوهش تلاش شده تا با استفاده از الگوریتم متشکل از روابط ساده تحلیلی و نیمه تجربی، نرخ تبخیر سوخت متانول در مسئله آتش استخری کم‌عمق تحت اثر شار تابشی و دمای محیط گذرا محاسبه شود. در این الگوریتم، هر دو پدیده انتقال حرارت و انتقال جرم لحاظ شد و رفتار هر پدیده مطالعه شد. در مقایسه نتایج شبیه‌سازی‌ها با نتایج عددی پژوهش‌های دیگر، دقت قابل قبولی (کمتر از 3 درصد خطای نسبی) مشاهده شد. همچنین، در مقایسه نتایج شبیه‌سازی با نتایج تجربی، مشخص شد نتایج پایای شبیه‌سازی به نسبت نتایج تجربی، 1 درصد خطای نسبی دارد. با بررسی نتایج، مشاهده شد که نرخ تبخیر در حالتی که شار تابشی گذراست، به نسبت حالتی که شار تابشی پایا است 50 ثانیه تأخیر زمانی دارد. همچنین، عدد ناسلت و عدد گراشوف مستقل از شار تابشی و وابسته به دمای محیط اطراف می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulations of evaporation rate and fuel temperature under the transient radiative heat flux in the case of pool fire

نویسندگان [English]

  • Ghassem Heidarinejad 1
  • Farhad Jems 2
  • Mohammad Safarzadeh 3
1 Faculty of Mechanical Engineering, Tarbiat Modares University
2 Tarbiat Modares University, Faculty of Mechanical engineering. Energy Conversion Group
3 Tarbiat Modares University
چکیده [English]

 
Computing the evaporation rate of fuel is one of the challenges and complexities of pool fire simulations. In this study, the evaporation rate of methanol in a shallow pool fire problem is computed using an algorithm that includes analytical and empirical relations. Modeled radiative heat flux and surrounding air temperature are considered transient. Heat and mass transfer phenomena are included in this algorithm, and their effects are discussed. The relative error of results to other numerical studies was below 3 percent. Also, by comparing steady results to experimental results, the relative error was 1 percent. Results show that the evaporation rate in transient radiative heat flux case is delayed 50 seconds to constant radiative flux. In addition, Nusselt number and Grashof number are independent of radiative flux, and depend on surrounding air temperature.
 

کلیدواژه‌ها [English]

  • Evaporation rate
  • thin pool fire
  • Mass transfer
  • Numerical simulation
  1. R. A. Demarco Bull, Modelling thermal radiation and soot formation in buoyant diffision flames, PhD Thesis, Marseille University, Marseille, 2012.
  2. C. Sedano, O. López, A. Ladino, and F. Muñoz, “Prediction of a methane circular pool fire with fireFoam,” MATEC Web of Conferences, vol. 240, 2018, doi: 10.1051/matecconf/201824005026.
  3. W. Yao, J. Yin, X. Hu, J. Wang, and H. Zhang, “Numerical modeling of liquid n-heptane pool fires based on heat feedback equilibrium,” Procedia Eng, vol. 62, pp. 377–388, 2013, doi: 10.1016/j.proeng.2013.08.079.
  4. W. C. Ikealumba and H. Wu, “Modeling of Liquefied Natural Gas Release and Dispersion: Incorporating a Direct Computational Fluid Dynamics Simulation Method for LNG Spill and Pool Formation,” Ind Eng Chem Res, vol. 55, no. 6, pp. 1778–1787, 2016, doi: 10.1021/acs.iecr.5b04490.
  5. B. Sun, K. Guo, and V. K. Pareek, “Dynamic simulation of hazard analysis of radiations from LNG pool fire,” J Loss Prev Process Ind, vol. 35, pp. 200–210, 2015, doi: 10.1016/j.jlp.2015.04.010.
  6. A. C. Y. Yuen et al., “Numerical study of the development and angular speed of a small-scale fire whirl,” J Comput Sci, vol. 27, pp. 21–34, 2018, doi: 10.1016/j.jocs.2018.04.021.
  7. G. Maragkos, T. Beji, and B. Merci, “Advances in modelling in CFD simulations of turbulent gaseous pool fires,” Combust Flame, vol. 181, pp. 22–38, 2017, doi: 10.1016/j.combustflame.2017.03.012.
  8. M. Safarzadeh, G. Heidarinejad, and H. Pasdarshahri, “Accuracy of Sub-grid Models in Internal Fire Whirl Modeling by Large Eddy Simulation,” Fuel and Combustion, vol. 13, no. 2, pp. 41–56, 2020. (in Persian)
  9. F. Jems, M. Safarzadeh, and G. Heidarinejad, “Numerical simulation of liquid fuel evaporation rate under uniform radiative heat flux in thin pool,” in 19th Fluid Dynamics Conference, Sharif Univerisy of Technology, Tehran, Iran, November 2021, pp. 1-8. Online. Available: https://civilica.com/doc/1328644 (in Persian)
  10. F. Jems, M. Safarzadeh, and G. Heidarinejad, “Numerical Simulations of Fuel Temperature and Evaporation Rate Under the Transient Radiative Heat Flux in Thin Pool Fire,” in 9th Fuel and Combustion Conference, Shiraz University, Shiraz, Iran, February 2022. Online. Available: https://civilica.com/doc/1452525 (in Persian)
  11. T. Beji and B. Merci, “Development of a numerical model for liquid pool evaporation,” Fire Saf J, vol. 102, no. July, pp. 48–58, 2018, doi: 10.1016/j.firesaf.2018.11.002.
  12. T. Sikanen and S. Hostikka, “Modeling and simulation of liquid pool fires with in-depth radiation absorption and heat transfer,” Fire Saf J, vol. 80, pp. 95–109, 2016, doi: 10.1016/j.firesaf.2016.01.002.
  13. T. Beji, “Theoretical analysis of the liquid thermal structure in a pool fire,” J Fire Sci, vol. 39, no. 1, pp. 36–52, 2021, doi: 10.1177/0734904120962376.
  14. J. F. Perez Segovia, T. Beji, and B. Merci, “Assessment of an Evaporation Model in CFD Simulations of a Free Liquid Pool Fire Using the Mass Transfer Number Approach,” Flow Turbul Combust, vol. 101, no. 4, pp. 1059–1072, 2018, doi: 10.1007/s10494-018-9943-1.
  15. W. Huang, F. Huang, J. Fang, and L. Fu, “A calculation method for the numerical simulation of oil products evaporation and vapor diffusion in an internal floating-roof tank under the unsteady operating state,” J Pet Sci Eng, vol. 188, no. January, pp. 1-12, 2020, doi: 10.1016/j.petrol.2019.106867.
  16. A. Galeev, Y. Chistov, and S. Ponikarov, “Numerical analysis of flammable vapour cloud formation from gasoline pool,” Process Safety and Environmental Protection, vol. 137, pp. 211–222, 2020, doi: 10.1016/j.psep.2020.02.031.
  17. J. R. Stewart, H. N. Phylaktou, G. E. Andrews, and A. D. Burns, “Evaluation of CFD simulations of transient pool fire burning rates,” J Loss Prev Process Ind, vol. 71, no. March, pp. 1-14, 2021, doi: 10.1016/j.jlp.2021.104495.
  18. B. D. Ditch, J. L. de Ris, T. K. Blanchat, M. Chaos, R. G. Bill, and S. B. Dorofeev, “Pool fires - An empirical correlation,” Combust Flame, vol. 160, no. 12, pp. 2964–2974, 2013, doi: 10.1016/j.combustflame.2013.06.020.
  19. V. Babrauskas, “Estimating large pool fire burning rates,” Fire Technol, vol. 19, no. 4, pp. 251–261, Nov. 1983, doi: 10.1007/BF02380810.
  20. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overhold, Fire Dynamics Simulator User ’s Guide (FDS), Sixth Edition, NIST Special Publication 1019, 2020.
  21. H. Pretrel, P. Querre, and M. Forestier, “Experimental study of burning rate behaviour in confined and ventilated fire compartments,” Fire Safety Science, vol. i, no. January, pp. 1217–1228, 2005, doi: 10.3801/IAFSS.FSS.8-1217.
  22. J. M. Chatris, E. Planas, J. Arnaldos, and J. Casal, “Effects of thin-layer boilover on hydrocarbon pool fires,” Combustion Science and Technology, vol. 171, no. 1, pp. 141–161, 2001, doi: 10.1080/00102200108907862.
  23. J. M. Chatris, J. Quintela, J. Folch, E. Planas, J. Arnaldos, and J. Casal, “Experimental study of burning rate in jet-fuel pool fires,” Combust Flame, vol. 126, no. 01, pp. 1373–1383, 2001.
  24. M. Muñoz, J. Arnaldos, J. Casal, and E. Planas, “Analysis of the geometric and radiative characteristics of hydrocarbon pool fires,” Combust Flame, vol. 139, no. 3, pp. 263–277, 2004, doi: 10.1016/j.combustflame.2004.09.001.
  25. M. Klassen and J. P. Gore, Structure and radiation properties of pool fires. NIST, 1994.
  26. J. Floyd and R. McDermott, “Development and evaluation of two new droplet evaporation schemes for fire dynamics simulations,” Fire Saf J, vol. 91, no. 1, pp. 643–652, 2017, doi: 10.1016/j.firesaf.2017.04.036.
  27. D. Drysdale, An introduction to fire dynamics, Third Edition, John Wiley \& Sons, 2011.
  28. Thermal-FluidsPedia | Thermophysical properties | Thermal-Fluids Central.www.thermalfluidscentral.org/encyclopedia/index.php/Thermophysical_Properties (accessed Dec. 04, 2021).
  29. M. J. Hurley et al., SFPE handbook of fire protection engineering, fifth edition, Springer, 2016. doi: 10.1007/978-1-4939-2565-0.
  30. B. Sun, K. Guo, and V. K. Pareek, “Computational fluid dynamics simulation of LNG pool fire radiation for hazard analysis,” J Loss Prev Process Ind, vol. 29, no. 1, pp. 92–102, 2014, doi: 10.1016/j.jlp.2014.02.003.