مطالعه عددی اثرهای همزمان زمانبندی سوخت پیش‌پاشش و هندسه کاسه پیستون در یک موتور RCCI با سوخت گازسنتز/دیزل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد ُ دانشگاه تخصصی فناوریهای نوین آمل

2 استادیار دانشکده مهندسی فناوریهای نوین- دانشگاه تخصصی فناوریهای نوین آمل

چکیده

 
این تحقیق عددی به بررسی همزمان اثرهای زمان بندی دو مرحله‌ای پاشش سوخت دیزل (مرحله اول در 25، 40 و 55 درجه گردش میل‌لنگ قبل از نقطه مرگ بالا و مرحله دوم در10درجه گردش میل‌لنگ قبل از نقطه مرگ بالا)، شکل کاسه پیستون (مقعری و کم عمق عریض) در یک موتور دیزل سنگین غیرجاده‌ای در شرایط احتراق اشتعال تراکمی واکنش کنترل شونده و در سه حالت احتراق دیزل‌خالص،دیزل-گازسنتز20 درصد و دیزل-گازسنتز40 درصد می‌پردازد. برای انجام شبیه‌سازی‌ها از نرم‌افزار دینامیک سیالات محاسباتی کانورج و برای شبیه‌سازی‌های احتراق از الگوی احتراق-  SAGE به همراه یک ساز و کار سینتیک شیمیایی که شامل 72 گونه و 360 واکنش بوده استفاده شد. نتایج نشان داد با افزایش سهم گاز سنتز، سرعت احتراق در مقایسه با حالت کارکرد دیزل پایه افزایش یافته و سبب رخ دادن شروع احتراق در نقاط نزدیک‌تر به نقطه مرگ بالا شده است. استفاده از کاسه پیستون کم عمق عریض درحالت احتراق دیزل– گازسنتز 4 درصد و زمان‌بندی 55 درجه میل‌لنگ قبل از نقطه مرگ بالا سبب کاهش چشمگیر نرخ حداکثر فشار در داخل سیلندر نسبت به سایر حالت‌های احتراق شده است. همچنین در این حالت احتراق (دیزل-گازسنتز 40 درصد) میزان انتشار اکسیدهای نیتروژن، ذرات دوده و هیدروکربن‌های نسوخته به ترتیب برابر با 17/18‌، 0/015‌، 0/1 گرم بر کیلوگرم سوخت است که این مقادیر در مقایسه با حالت کارکرد دیزل پایه 63/5 درصد‌، 96/5 درصد و 80/2 درصد کاهش یافته است. با این حال استفاده از گازسنتز سبب افزایش انتشار منوکسیدکربن شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of the simultaneous impacts of pilot fuel injection timing strategies and piston bowl geometry in a RCCI engine with dieselsyngas fuel

نویسندگان [English]

  • mojtaba ebrahimi 1
  • bahram jafari 2
1 Department of Engineering Modern Technologies,Amol University of Special Modern Technologies (AUSMT),
2 Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT),
چکیده [English]

This numerical study the simultaneous impacts of diesel direct injection timing (pilot injection at 25-40-55 Crank Angle (CA) Before Top Dead Center (BTDC) and main injection at 10 BTDC), combustion chamber geometry (re-entrant (baseline), and wide-shallow chamber), and applying syngas, 20% and 40% of total energy per cycle, in a heavy-duty off-road RCCI engine. This numerical research is conducted using CONVERGE computational fluid dynamic code. The SAGE combustion model was used coupled with a detailed chemical kinetic mechanism consist of 72 species and 360 reactions. The results showed that increasing the syngas to diesel ratio up to 40% caused the combustion speed increased compared to the baseline pure diesel combustion and the start of combustion occurred near the top dead center. Also use of the wide-shallow combustion chamber along with diesel injection at 55 CA BTDC at diesel- 40% syngas combustion operating condition significantly reduced the maximum pressure rise rate compared to other combustion conditions. Additionally, at this combustion condition emissions of Nitrogen Oxides (NOx), soot and Hydro-Carbons are 17.18, 0.015, 0.1 g/kg of fuel which are decreased by 63.5%, 96.5% and 80.2%, respectively, compared to the baseline pure diesel combustion. However, the use of syngas increased the emission of carbon monoxide.
 
.

کلیدواژه‌ها [English]

  • RCCI combustion
  • piston bowl
  • pilot injection
  • Diesel injection timing
  • Syngas
  1. Zhong, Wenjun, et al. “Experimental Study the Effect of Injection Strategies on Combustion and Emission Characteristics in Gasoline Compression Ignition Engines Using Gasoline/Hydrogenated Catalytic Biodiesel Blends.” Fuel, vol. 278, Oct. 2020, p. 118156, 1016/j.fuel.2020.118156.
  2. Teixeira, Claudio Vidal, et al. “Reactivity Controlled Compression Ignition with Triple Injection Fuel: Ethanol–Diesel–Ethanol.” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 8, 8 July 2020, 1007/s40430-020-02441-z. Accessed 28 July 2020.
  3. Yousefi, Amin, et al. “An Experimental and Numerical Study on Diesel Injection Split of a Natural Gas/Diesel Dual-Fuel Engine at a Low Engine Load.” Fuel, vol. 212, Jan. 2018, pp. 332–346, 1016/j.fuel.2017.10.053. Accessed 15 June 2019
  4. Mohammadian, Amir, et al. “Effect of Injection Strategies on a Single-Fuel RCCI Combustion Fueled with Isobutanol/Isobutanol + DTBP Blends.” Fuel, vol. 278, Oct. 2020, p. 118219, 1016/j.fuel.2020.118219. Accessed 28 July 2020.
  5. Meng, Xiangyu, et al. “Study of Using Diesel/High-on Biofuel Blends as the Pilot Fuel with Large Proportion and Split Injection in the Dual-Fuel Combustion.” Fuel, vol. 268, May 2020, p. 117345, 1016/j.fuel.2020.117345. Accessed 23 Aug. 2022
  6. Bhiogade, Girish E., et al. “Investigations on Premixed Charge Compression Ignition (PCCI) Engines: A Review.” Fluid Mechanics and Fluid Power – Contemporary Research, 21 Sept. 2016, pp. 1455–1463, 1007/978-81-322-2743-4_139. Accessed 23 Aug. 2022.
  7. Singh, Akhilendra Pratap, and Avinash Kumar Agarwal. “Low-Temperature Combustion: An Advanced Technology for Internal Combustion Engines.” Energy, Environment, and Sustainability, 30 Nov. 2017, pp. 9–41, 1007/978-981-10-7575-9_2.
  8. Drews P, Albin T, Hoffmann K, Vanegas A, Felsch C, Peters N, Abel D.“Model based optimal control for PCCI combustion engines.” 6th IFAC Symposium Advances in Automotive Control, July 12-14, 2010
  9. Li, Jing, et al. “Numerical Study on Double Injection Techniques in a Gasoline and Biodiesel Fueled RCCI (Reactivity Controlled Compression Ignition) Engine.” Applied Energy, vol. 211, Feb. 2018, pp. 382–392, 1016/j.apenergy.2017.11.062. Accessed 3 Nov. 2020.
  10. Anand Krishnasamy, Murugesa Pandian M “A Comparison of Conventional and Reactivity Controlled Compression Ignition (RCCI) Combustion Modes in a Small Single Cylinder Air-Cooled Diesel Engine.” SAE Technical Paper Series, 8 Oct. 2017, 10.4271/2017-01-2365.
  11. Curran, Scott J, et al. “Reactivity Controlled Compression Ignition Combustion on a Multi-Cylinder Light-Duty Diesel Engine.” International Journal of Engine Research, vol. 13, no. 3, 26 Apr. 2012, pp. 216–225, 1177/1468087412442324. Accessed 7 Nov. 2020.
  12. Kokjohn, Sage, et al. “Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines.” SAE International Journal of Engines, vol. 4, no. 1, 12 Apr. 2011, pp. 360–374, 4271/2011-01-0357.
  13. Li, Yaopeng, et al. “Parametric Study and Optimization of a RCCI (Reactivity Controlled Compression Ignition) Engine Fueled with Methanol and Diesel.” Energy, vol. 65, Feb. 2014, pp. 319–332, 1016/j.energy.2013.11.059. Accessed 23 Aug. 2022.
  14. Dempsey, A. B., das Adhikary, B., Viswanathan, S., & Reitz, R. D. “Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel.” Journal of Engineering for Gas Turbines and Power, vol. 134, no. 8, 21 June 2012, 1115/1.4006703. Accessed 24 Dec. 2019.
  15. Pan, S., Liu, X., Cai, K., Li, X., Han, W., & Li, B. “Experimental Study on Combustion and Emission Characteristics of Iso-Butanol/Diesel and Gasoline/Diesel RCCI in a Heavy-Duty Engine under Low Loads.” Fuel, vol. 261, Feb. 2020, p. 116434, 10.1016/j.fuel.2019.116434.
  16. Jacob Thomas, J., Sabu, V., Basrin, G., & Nagarajan, G. “Hexanol: A Renewable Low Reactivity Fuel for RCCI Combustion.” Fuel, vol. 286, Feb. 2021, p. 119294, 10.1016/j.fuel.2020.119294.
  17. Zhou, D., Yang, W., An, H., Li, J., & Shu, C “A Numerical Study on RCCI Engine Fueled by Biodiesel/Methanol.” Energy Conversion and Management, vol. 89, Jan. 2015, pp. 798–807, 10.1016/j.enconman.2014.10.054.
  18. Zheng, Z., Xia, M., Liu, H., Wang, X., & Yao, M. “Experimental Study on Combustion and Emissions of Dual Fuel RCCI Mode Fueled with Biodiesel/N-Butanol, Biodiesel/2,5-Dimethylfuran and Biodiesel/Ethanol.” Energy, vol. 148, Apr. 2018, pp. 824–838, 10.1016/j.energy.2018.02.015.
  19. Thomas, J. J., Sabu, V., Nagarajan, G., Kumar, S., & Basrin, G. “Influence of Waste Vegetable Oil Biodiesel and Hexanol on a Reactivity Controlled Compression Ignition Engine Combustion and Emissions.” Energy, vol. 206, Sept. 2020, p. 118199, 10.1016/j.energy.2020.118199.
  20. Hanson, R., Curran, S., Wagner, R., & Reitz, R. D.“Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine.” SAE International Journal of Engines, vol. 6, no. 1, 8 Apr. 2013, pp. 488–503, 10.4271/2013-01-1653.
  21. Rahnama, P., Paykani, A., Bordbar, V., & Reitz, R. D. “A Numerical Study of the Effects of Reformer Gas Composition on the Combustion and Emission Characteristics of a Natural Gas/Diesel RCCI Engine Enriched with Reformer Gas.” Fuel, vol. 209, Dec. 2017, pp. 742–753, 10.1016/j.fuel.2017.07.103.
  22. Xu, Z., Jia, M., Xu, G., Li, Y., Zhao, L., Xu, L., & Lu, X.“Potential for Reducing Emissions in Reactivity-Controlled Compression Ignition Engines by Fueling Syngas and Diesel.” Energy & Fuels, vol. 32, no. 3, 6 Feb. 2018, pp. 3869–3882, 10.1021/acs.energyfuels.7b03265.
  23. Rahnama, P., Paykani, A., & Reitz, R. D. “A Numerical Study of the Effects of Using Hydrogen, Reformer Gas and Nitrogen on Combustion, Emissions and Load Limits of a Heavy Duty Natural Gas/Diesel RCCI Engine.” Applied Energy, vol. 193, May 2017, pp. 182–198, 10.1016/j.apenergy.2017.02.023.
  24. Hagos, F. Y., Aziz, A. R. A., & Sulaiman, S. A.“Trends of Syngas as a Fuel in Internal Combustion Engines.” Advances in Mechanical Engineering, vol. 6, Jan. 2014, p. 401587, www.build-a-gasifier.com/PDF/401587.pdf, 10.1155/2014/401587.
  25. Tartakovsky, L., & Sheintuch, M. “Fuel Reforming in Internal Combustion Engines.” Progress in Energy and Combustion Science, vol. 67, July 2018, pp. 88–114, 10.1016/j.pecs.2018.02.003.
  26. Fiore, M., Magi, V., & Viggiano, A.“Internal Combustion Engines Powered by Syngas: A Review.” Applied Energy, vol. 276, Oct. 2020, p. 115415, 10.1016/j.apenergy.2020.115415.
  27. Bates, R., & Dölle, K.“Syngas Use in Internal Combustion Engines - a Review.” Advances in Research, vol. 10, no. 1, 10 Jan. 2017, pp. 1–8, 10.9734/air/2017/32896.
  28. Rahnama, P., Paykani, A., Bordbar, V., & Reitz, R. D “A Numerical Study of the Effects of Reformer Gas Composition on the Combustion and Emission Characteristics of a Natural Gas/Diesel RCCI Engine Enriched with Reformer Gas.” Fuel, vol. 209, Dec. 2017, pp. 742–753, 10.1016/j.fuel.2017.07.103.
  29. Xu, Z., Jia, M., Li, Y., Chang, Y., Xu, G., Xu, L., & Lu, X. “Computational Optimization of Fuel Supply, Syngas Composition, and Intake Conditions for a Syngas/Diesel RCCI Engine.” Fuel, vol. 234, Dec. 2018, pp. 120–134, 10.1016/j.fuel.2018.07.003.
  30. F. Chuahy, Flavio, and Sage L. Kokjohn. “Effects of Reformed Fuel Composition in “Single” Fuel Reactivity Controlled Compression Ignition Combustion.” Applied Energy, vol. 208, Dec. 2017, pp. 1–11, 10.1016/j.apenergy.2017.10.057.
  31. Xu, Zhen, et al. “Computational Optimization of Fuel Supply, Syngas Composition, and Intake Conditions for a Syngas/Diesel RCCI Engine.” Fuel, vol. 234, Dec. 2018, pp. 120–134, 10.1016/j.fuel.2018.07.003.
  32. Hariharan, Deivanayagam, et al. “Single-Fuel Reactivity Controlled Compression Ignition through Catalytic Partial Oxidation Reformation of Diesel Fuel.” Fuel, vol. 264, Mar. 2020, p. 116815, 10.1016/j.fuel.2019.116815.
  33. Krishnamoorthi, M., et al. “Experimental, Numerical and Exergy Analyses of a Dual Fuel Combustion Engine Fuelled with Syngas and Biodiesel/Diesel Blends.” Applied Energy, vol. 263, Apr. 2020, p. 114643, 10.1016/j.apenergy.2020.114643.
  34. Yang, C-H, and H Zhao. “In-Cylinder Studies of Hybrid Combustion in a Direct Injection Single-Cylinder Optical Engine.” International Journal of Engine Research, vol. 11, no. 6, Dec. 2010, pp. 515–531, 10.1243/14680874jer519.
  35. Splitter, Derek, et al. “Injection Effects in Low Load RCCI Dual-Fuel Combustion.” SAE Technical Paper Series, 11 Sept. 2011, 10.4271/2011-24-0047.
  36. Wang, Hu, et al. “The Effects of DI Fuel Properties on the Combustion and Emissions Characteristics of RCCI Combustion.” Fuel, vol. 227, Sept. 2018, pp. 457–468, 10.1016/j.fuel.2018.04.025.
  37. Pan, Suozhu, et al. “Experimental Study on Combustion and Emission Characteristics of Iso-Butanol/Diesel and Gasoline/Diesel RCCI in a Heavy-Duty Engine under Low Loads.” Fuel, vol. 261, Feb. 2020, p. 116434, 10.1016/j.fuel.2019.116434.
  38. Panda, Kasinath, and A. Ramesh. “Experimental Investigation of Multiple Injection Strategies on Combustion Stability, Performance and Emissions in a Methanol-Diesel Dual Fuel Non-Road Engine.” SAE Technical Paper Series, 14 Apr. 2020, 10.4271/2020-01-0308.
  39. Harari, P.A., et al. “Experimental Studies on Performance and Emission Characteristics of Reactivity Controlled Compression Ignition (RCCI) Engine Operated with Gasoline and Thevetia Peruviana Biodiesel.” Renewable Energy, vol. 160, Nov. 2020, pp. 865–875, 10.1016/j.renene.2020.07.009.
  40. Azmi, Muhammad Asyraf Mohd, et al. “Numerical Study of the Effect of Injection Strategy and Compression Ratio on Gasoline/Diesel Fueled RCCI Engine.” SAE Technical Paper Series, 30 Oct. 2018, 10.4271/2018-32-0017.
  41. Dempsey, Adam B., et al. “Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel.” SAE International Journal of Engines, vol. 6, no. 1, 8 Apr. 2013, pp. 78–100, 10.4271/2013-01-0264.
  42. Nazemian, Mehrdad, et al. “Effects of Piston Geometry and Injection Strategy on the Capacity Improvement of Waste Heat Recovery from RCCI Engines Utilizing DOE Method.” Applied Thermal Engineering, vol. 152, Apr. 2019, pp. 52–66, 10.1016/j.applthermaleng.2019.02.055.
  43. Kakaee, Amir-Hasan, et al. “Effects of Piston Bowl Geometry on Combustion and Emissions Characteristics of a Natural Gas/Diesel RCCI Engine.” Applied Thermal Engineering, vol. 102, June 2016, pp. 1462–1472, 10.1016/j.applthermaleng.2016.03.162.
  44. Jafari, Bahram, et al. “Assessment of the Impacts of Combustion Chamber Bowl Geometry and Injection Timing on a Reactivity Controlled Compression Ignition Engine at Low and High Load Conditions.” International Journal of Engine Research, 4 Oct. 2020, p. 146808742096121, 10.1177/1468087420961211.
  45. Kamimoto, T., & Kobayashi, H.“Combustion processes in diesel engines, Prog. Energy Cornbust ,Vol. 17, pp. 163-18917, Sci. 1991
  46. J. Richards, P. K. Senecal and E. Pomraning, “CONVERGE v2.3 Manual,” Convergent Science, Inc., Madison, WI, 2016.
  47. K. Senecal and et al., “Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Liftoff Length using CFD and Parallel Detailed Chemistry,” SAE Technical Paper Vol. 112, Section 3: JOURNAL OF ENGINES (2003), pp. 1331-1351
  48. Naber and R. D. Reitz, “Modeling Engine Spray/Wall Impingement” SAE Technical Paper.Vol. 97, Section 6: JOURNAL OF ENGINES (1988), pp. 118-140
  49. F. Chuahy, Flavio, and Sage L. Kokjohn.“High Efficiency Dual-Fuel Combustion through Thermochemical Recovery and Diesel Reforming.” Applied Energy, vol. 195, June 2017, pp.503–522,
  50. Azmi, Muhammad Asyraf Mohd, et al. “Numerical Study of the Effect of Injection Strategy and Compression Ratio on Gasoline/Diesel Fueled RCCI Engine.” SAE Technical Paper Series, 30 Oct. 2018, 10.4271/2018-32-0017.
  51. Xu, Zhen, et al. “Computational Optimization of Fuel Supply, Syngas Composition, and Intake Conditions for a Syngas/Diesel RCCI Engine.” Fuel, vol. 234, Dec. 2018, pp. 120–134, 10.1016/j.fuel.2018.07.003.